市場調査レポート

光インターコネクトの収益機会:市場・技術予測-オンチップおよびチップツーチップ

Revenue Opportunities for Optical Interconnects: Market and Technology Forecast - 2013 to 2020 Vol II: On-Chip and Chip-to-Chip

発行 Communications Industry Researchers (CIR) 商品コード 278633
出版日 ページ情報 英文
即納可能
価格
本日の銀行送金レート: 1USD=102.12円で換算しております。
Back to Top
光インターコネクトの収益機会:市場・技術予測-オンチップおよびチップツーチップ Revenue Opportunities for Optical Interconnects: Market and Technology Forecast - 2013 to 2020 Vol II: On-Chip and Chip-to-Chip
出版日: 2013年08月31日 ページ情報: 英文
概要

当レポートでは、チップレベルにおける光相互接続の最新の発展動向および世界の重要な研究機関における取り組みについて分析し、従来のCPUチップの見通し、最新のアーキテクチャー、光相互接続と将来の金属インターコネクト・インターコネクト代替との比較、チップレベルでの光相互接続の商業的機会を説明した10カ年ロードマップ、および主要企業のプロファイルを提供しており、概略下記の構成でお届けいたします。

エグゼクティブサマリー

第1章 イントロダクション

第2章 オンチップ/チップツーチップ相互接続の需要の分析

  • 電子インターコネクトの限界
  • ムーアの法則、スケーリングおよび相互接続
    • ムーアの法則の現在の予測
    • 相互接続への影響
  • マルチコアプロセッサーが新しい相互接続問題を生む
  • 3Dチップ
  • ノンシリコンチップへ移行する可能性:カーボンナノチューブ、グラフェン、量子ドット
    • 相互接続への影響
    • 光コンピューティングへの移行の可能性
  • 本章の要点

第3章 オンチップ/チップツーチップ相互接続の技術

  • チップツーチップ相互接続向けの現在の光学部品
  • チップ型相互接続向けの新しいレーザー技術
    • VCSEL
    • 量子ドットレーザー
    • その他の技術
  • チップ型相互接続向けの新しい検出技術
  • チップ型相互接続向けの新しいモジュレーター技術
  • チップ型相互接続向けの10カ年ロードマップ・収益予測
  • 将来のチップ型相互接続における光集積化の役割
    • シリコンフォトニクス
    • リン化インジウムおよびその他の無機半導体
    • チップ型型相互接続におけるポリマー導波路の役割
    • チップ型型相互接続における光集積化の10カ年ロードマップ・収益予測
  • その他の先進相互接続向け光学の代替
    • カーボンナノチューブ
    • その他
  • 本章の要点
目次

The traditional architectural and material assumptions with regard to how integrated circuits are fabricated have been challenged in recent years and the semiconductor industry is looking for new solutions. Power and thermal issues add to this apparent crisis in the semiconductor industry.

One of the most important problems is the so-called "interconnect bottleneck," that is the tendency for data traffic jams to appear both on-chip and chip-to-chip. The interconnect bottleneck is emerging well before Moore's Law completely runs out of steam, but reappears in differing forms in some of the new architectures designed to make chip scaling easier.

The "obvious" solution is to deploy fiber optics; which is usually the way to go whenever and wherever there is a bandwidth problem. But fiber optic solutions to on-chip and chip-to-chip interconnection is something that will be hard to develop for commercial chip products. Producing photonic devices that are small enough and inexpensive enough to be used at the chip level is an immensely difficult requirement.

In this report, we analyze the latest developments in optical interconnection at the chip level and the progress in this area that is being made by important research teams throughout the world. Both R&D and commercial development are discussed.

The report looks at this issue from the perspective of classic CPU chips as well as the latest architectures, and the opportunities for optical interconnection are compared to a possible future for metal interconnects and interconnect alternatives that are even more exotic than photonics; carbon nanotubes, especially.

The report also contains a 10-year roadmap that explains where and when the commercial opportunities for optical interconnection at the chip level will emerge and how much they will be worth. We also profile the leading firms and research efforts involved in designing and implementing on-chip and chip-to-chip optical interconnection.

Table of Contents

Executive Summary

  • E.1 Opportunities and Business Models for Photonics Firms
  • E.2 How the Semiconductor Industry Will Use Optical Interconnection as an Enabling Technology
  • E.3 Summary of Key R&D Directions for On-Chip and Chip-to-Chip Optical Interconnection
  • E.4 Eight Companies and Other Organization that Will Create Photonic Interconnection for Chip-Level Interconnection
  • E.5 Roadmap and Summary 10-year Forecast for Chip Level Interconnection

Chapter One Introduction

  • 1.1 Background to this Report
  • 1.2 Objective and Scope of this Report
  • 1.3 Methodology of this Report
  • 1.4 Plan of this Report

Chapter Two Analysis of Demand for On-Chip/Chip-to-Chip Interconnection

  • 2.1 Limits to Electronic Interconnects
  • 2.2 Moore's Law, Scaling and Interconnection
    • 2.2.1 Current Prognosis for Moore's Law
    • 2.2.2 Impact on Interconnection
  • 2.2 Multi-Core Processors Breed New Interconnection Problems
  • 2.3 So Do 3D Chips
  • 2.4 Potential for Moving to Non-Silicon Chips: Carbon Nanotubes, Graphene, Quantum Dots
    • 2.4.1 Impact on Interconnection
    • 2.4 A Possible Transition to Optical Computing
    • 2.4.1 Impact on Interconnection
  • 2.5 Key Points Made in this Chapter

Chapter Three Technologies for On-Chip/Chip-to-Chip Interconnection

  • 3.1 Current Optical Assemblies for Chip-to-Chip Interconnection
  • 3.2 Emerging Laser Technology for Chip-Based Interconnections
    • 3.2.1 VCSELs
    • 3.2.2 Quantum Dot Lasers
    • 3.2.3 Other Technologies
  • 3.3 Emerging Detector Technology for Chip-Based Interconnection
  • 3.4 Emerging Modulator Technology for Chip-Based Interconnection
  • 3.5 Ten-Year Road Map and Revenue Forecast for Chip-Based Optical Interconnection
  • 3.6 The Role of Optical Integration in Future Chip-Based Interconnection
    • 3.6.1 Silicon Photonics
    • 3.6.2 Indium Phosphide and Other Inorganic Semiconductors
    • 3.6.3 The Role of Polymer Waveguides in Chip-Based Interconnection
    • 3.6.4 Ten-Year Road Map and Revenue Forecast for Optical Integration in Chip-Based Optical Interconnection
  • 3.7 Other Alternatives to Optics for Advanced Interconnection
    • 3.7.1 Carbon Nanotubes
    • 3.7.2 Other
  • 3.8 Key Points Made in this Chapter
Back to Top