無料レポート プレゼントキャンペーン 実施中 : メールサービスに新規登録いただいた方にご用意した無料レポートをご提供

株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

神経幹細胞・前駆細胞製品の戦略的開発

Strategic Development of Neural Stem & Progenitor Cell Products 2018

発行 BIOINFORMANT WORLDWIDE, LLC 商品コード 227599
出版日 ページ情報 英文 210 Pages
即納可能
価格
本日の銀行送金レート: 1USD=114.42円で換算しております。
Back to Top
神経幹細胞・前駆細胞製品の戦略的開発 Strategic Development of Neural Stem & Progenitor Cell Products 2018
出版日: 2018年01月01日 ページ情報: 英文 210 Pages
概要

当レポートでは、神経幹細胞および前駆細胞製品の市場を調査し、幹細胞の種類と概要、主な適応症別の罹患率と現在の治療薬・治療法、開発フェーズ別の臨床研究・臨床試験の動向、主要企業のプロファイルなどをまとめています。

第1章 レポート概要

第2章 イントロダクション

第3章 幹細胞:概要

  • 胚性幹細胞 (ES細胞)
  • 人工多能性幹細胞 (iPS細胞)
  • 幹細胞から抽出される特殊細胞の各種タイプ
  • ヒト幹細胞の各種タイプ
    • ヒト胚性幹細胞 (hESC)
    • 胚性生殖細胞 (EG-Cell)
    • 胎生幹細胞
    • 臍帯由来幹細胞
  • 成体幹細胞
    • 造血幹細胞 (HSCs)
    • 間葉系幹細胞 (MSC)
    • 神経幹細胞 (NSC)
  • 幹細胞の各種タイプの特徴
  • 細胞治療分野の臨床研究の件数:地域別
    • 臨床試験数:細胞タイプ別
    • 臨床研究数:適応症別

第4章 神経幹細胞 (NSC):概要

  • NSCのソース
  • 各種ソース由来のNSCの基礎特性
  • 神経変性疾患のための胎生幹細胞移植
  • 成体神経管細胞 (aNSC) 治療
    • 現在の治療環境

第5章 NSCの利用で治る可能性のある変性疾患

  • 神経変性疾患の従来の治療法
  • 神経変性疾患のNSCアプローチと従来型アプローチ
  • 理論と実践の大きなギャップ
  • NSCによる細胞療法アプローチの各種タイプ
  • NSC移植によって得られる可能性のある治療効果
  • もっとも最近の臨床試験
  • その他の臨床試験
  • 神経発達障害と細胞療法

第6章 脊髄損傷 (SCI) と細胞療法

  • 脊髄損傷の罹患率
  • 神経レベルと損傷の程度
  • 年間治療費・生涯治療費:米国
  • 脊髄損傷の治療薬・治療法
  • CIRMによる資金供給
  • 細胞療法
  • 神経再生に向けたSCIモデルとその有効性
  • 臨床試験リスト

第7章 アルツハイマー病

  • 罹患率
  • 米国の65歳以上の罹患人口予測
  • 米国の治療費:支払者別
  • 現在利用可能な治療薬
  • CIRMによる資金供給
  • 幹細胞移植

第8章 パーキンソン病

  • 罹患率
  • CIRMによる資金供給
  • 現在の治療薬
  • 細胞療法の可能性
  • 遺伝子治療

第9章 筋萎縮性側索硬化症 (ALS)

  • 罹患率
  • 対症療法
  • CIRMによる資金供給
  • ALSの幹細胞治療に注力する企業
  • 細胞療法

第10章 多発性硬化症(MS)

  • 罹患率
  • 治療薬
  • 神経幹細胞の適用
  • 内在性神経幹細胞の成長因子による刺激
  • CIRMによる資金供給

第11章 脳卒中

  • 罹患率
  • 現在利用可能な治療薬
  • 幹細胞治療
  • 実験的研究に利用されている各種幹細胞
  • 進行中の臨床試験
  • CIRMによる資金供給

第12章 市場分析

  • 現在の幹細胞環境
  • 主要な臨床的マイルストーン
  • 世界の細胞療法製品の市場、など

第13章 主要企業のプロファイル

  • Asterias Biotherapeutics Inc.
  • Atherdsys Inc.
  • Axiogenesis AG
  • AxoGen Inc.
  • BrainStorm Cell Therapeutics
  • Cellular Dynamics International
  • Celther Polska
  • Cellartis AB
  • CellCure Neurosciences Ltd.
  • Cellular Dynamics International Inc.
  • Celvive Inc.
  • EMD Millipore Corp.
  • International Stem Cell Corp.
  • Kadimastem Ltd.
  • Living Cell Technologies Ltd.
  • MEDIPOST
  • Neuralstem Inc.
  • NeuroGeneration Inc.
  • Neurona Therapeutics Inc.
  • Ocata Therapeutics Inc.
  • Opexa Therapeutics Inc.
  • ReNeuron PLC
  • RhinoCyte Inc.
  • Roslin Cells Ltd.
  • SanBio Inc.
  • Saneron CCEL Therapeutics Inc.
  • StemCells Inc.
  • StemBioSys Inc.
  • Stemedica Cell Technologies Inc.
  • STEMCELL Technologies Inc.
  • Talisman Therapeutics Ltd.
  • Xcelthera Inc.

付録

図表

目次

Executive Summary

Neurogenesis is the process by which neurons are created. This process is most active during pre-natal development when neurogenesis is responsible for populating the growing brain. Neural stem cells (NSCs) are the self-renewing, multipotent cells that differentiate into the main phenotypes of the nervous system. These cell types include neurons, astrocytes, and oligodendrocytes. Neural progenitor cells (NPCs) are the progeny of stem cell division that normally undergo a limited number of replication cycles in vivo.

In 1992, Reynolds and Weiss were the first to isolate neural stem cells from the striatal tissue of adult mice brain tissue, including the subventricular zone, which is a neurogenic area. Since then, neural progenitor and stem cells have been isolated from various areas of the adult brain, including non-neurogenic areas like the spinal cord, and from other species, including humans.

During the development of the nervous system, neural progenitor cells can either stay in the pool of proliferating undifferentiated cells or exit the cell cycle and differentiate. The past twenty years have seen great advances in neural stem cell research and applications. Researchers have isolated NSCs, which have demonstrated pluripotency and the ability to differentiate into many different immune system cell types.

In addition, NSCs can be regulated both in vitro and in vivo, which represent different commercial product opportunities. Neural stem cells have become of profound interest to the research community due to their potential to be used in drug discovery and delivery applications, as well as for tools of neural toxicology assessment.

NSC transplantation also represents a ground-breaking approach for treating a range of chronic neurological diseases and acute CNS injuries, including Parkinson's, Alzheimer's and spinal cord injury, among other conditions.

Furthermore, neural stem and progenitor cells offer the potential to safely carry out pharmacology assessment for drugs designed to impact brain function or physiology. As tests on human cells become increasingly feasible, the potential grows for companies to develop disease-specific cell assays. As novel drug delivery agents, neural stem cells also show promise in killing gliomas and other cancers.

To facilitate research resulting from these advances, a large and diverse market has emerged for neural stem cell products and services. One thriving component of the neural stem cell marketplace is the market for research tools and supplies. Among these research supply companies, dominant competitors include Thermo Fisher Scientific, Merck Millipore, Cellular Dynamics International (a FujiFilm Company), Ncardia, and STEMCELL Technologies, among others.

While the number of adult stem cell therapies entering clinical trials continues to expand, the development of neural stem cell therapies has been affected by barriers to entry that include patent restrictions, dominance of current competitors, and the complexity of neural stem cell applications. Despite these limitations, more than a dozen companies are pursuing preclinical and clinical programs using neural stem and progenitor cells as tools to address human injury and disease.

Pharmaceutical companies are also demonstrating intense interest in neural stem and progenitor cells. Because of their plasticity, ability to develop into the main phenotypes of the nervous system, and unlimited capacity for self-renewal, NSCs have been proposed for use in a variety of pharmaceutical applications, including:

  • Neurotoxicity testing
  • Cellular therapies to treat central nervous system (CNS) conditions
  • Neural tissue engineering and repair
  • Drug target validation and testing
  • Personalized medicine

For this reason, utilization of neural stem cell products by the pharmaceutical sector represents a thriving segment of the global marketplace. Of interest to this community is the use of neural stem cells to heal tissues that have a naturally limited capacity for renewal, including the human brain and spinal cord tissue.

Furthermore, development of new drugs is extremely costly and the success rate of bringing new compounds to the market is unpredictable. Therefore, it is crucial that pharmaceutical companies minimize late-stage product failures, including unexpected neurotoxic effects, that can arise when candidate drugs enter the clinical testing stages. It is desirable to test candidate drugs using in vitro assays of high human relevance as early as possible. Because neural stem cells have the potential to differentiate into nearly all the main phenotypes of the nervous system, they represent an ideal cell type from which to design such neural screening assays.

Growth into stem cell research has exploded over the past several decades, and the market to supply neural stem cell products and therapies has grown to meet this demand. Claim this 210-page global strategic report to reveal the current and future needs of the NSC marketplace, so you can focus your marketing efforts on profitable products, in promising research areas, within lucrative domestic and international markets.

Table of Contents

1. REPORT OVERVIEW

  • 1.1 Statement of the Report
  • 1.1 Executive Summary

2. INTRODUCTION

3. STEM CELLS: A BRIEF OVERIVEW

  • 3.1 Embryonic Stem Cells
  • 3.2 Induced Pluripotent Stem Cells
  • 3.3 Types of Specialized Cells Derived from Stem Cells
  • 3.4 Types of Stem Cells in the Human Body
    • 3.4.1 Human Embryonic Stem Cells
    • 3.4.2 Embryonic Germ Cells
    • 3.4.3 Fetal Stem Cells
    • 3.4.4 Umbilical Cord Stem Cells
  • 3.5 Adult Stem Cells
    • 3.5.1 Hematopoietic Stem Cells
    • 3.5.2 Mesenchymal Stem Cells
    • 3.5.3 Neural Stem Cells
      • 3.5.3.1 NSCs' Capacity to Migrate and Engraft
      • 3.5.3.2 Characterization of NSCs
      • 3.5.3.3 Major Three Neuronal Lineages from NSCs
  • 3.6 Characteristics of Different Types of Stem Cells

4. NEURAL STEM CELLS: AN OVERVIEW

  • 4.1 Sources of NSCs
  • 4.2 Basal Properties of NSCs Obtained from Different Sources
    • 4.2.1 BMSCs as a Sourse for NSC-Like Cells
    • 4.2.2 UCBSCs: Express Pro-Neural Genes and Neural Markers
    • 4.2.3 ESCs as a Source for NSCs
    • 4.2.4 iPSCs as a Source of NSCs
      • 4.2.4.1 Methods Used to Produce iPSCs
      • 4.2.4.2 Chemicals Used for Neural Differentiation of iPSCs
      • 4.2.4.3 Small-Molecule-Based Culture Protocols for Inducing hPSCs Differentiation
      • 4.2.4.4 Compounds Used for NSC Proliferation
      • 4.2.4.5 Synthetic Compounds Used to Induce NSC Differentiation into Neurons
      • 4.2.4.6 Natural Products Affecting NSC Survival, Proliferation, and Differentiation
  • 4.3 Fetal Stem Cell Transplantation for Neurodegenerative Diseases
  • 4.4 Adult Human Neural Stem Therapeutics
    • 4.4.1 Current Therapeutic Status of aNSCs

5. DEGENERATIVE DISEASES WITH POSSIBLE CURE USING NSCS

  • 5.1 Conventional Treatments for Neurodegenerative Diseases
  • 5.2 NSC-Based and Traditional Approaches for Neurodenerative Diseases
  • 5.3 The Wide Gap Between Theory and Practice in NSC Applications
  • 5.4 Types of NSCs Used for Cell Therapy Approaches
    • 5.4.1 Fetal and Adult-Derived NSCs
    • 5.4.2 NSCs from Pluripotent Stem Cells
  • 5.5 Possible Therapeutic Actions of Grafted NSCs in Neurodegenerative Diseases
  • 5.6 Most Recent Clinical Trials Using NSCs for Neurological Disorders
    • 5.6.1 Possible Outcome of Clinical Trials
  • 5.7 Other Clinical Trials Using NSCs for Neurodegenerative Diseases
  • 5.8 Neurodevelopmental Disorders and Cell Therapy
    • 5.8.1 Clinical Trials for Neurodevelopmental Disorders

6. SPINAL CORD INJURY AND CELL THERAPY

  • 6.1 Incidence of Spinal Cord Injury
  • 6.2 Neurological Level and Extent of Lesion in Spinal Cord Injuries
  • 6.3 Annual and Lifetime Cost of Treating SCI Patients in the US
  • 6.4 Medications and Other Treatments for Spinal Cord Injury
  • 6.5 CIRM Funding for Spinal Cord Injury
  • 6.6 Cell Therapy for Spinal Cord Injury
    • 6.6.1 Studies in Animal Models of Cell Therapy for SCI
      • 6.6.1.1 Preclinical Trials Using MSCs for SCI
      • 6.6.1.2 Preclinical Trials Using NPCs for SCI
      • 6.6.1.3 Preclinical Studies Using Olfactory Ensheathing Cells for SCI
      • 6.6.1.4 Preclinical Studies Using SCs for SCI
  • 6.7 SCI Models and Effectiveness of Neuronal Regeneration
  • 6.8 Clinical Trials Using Stem Cells for Spinal Cord Injury

7. ALZHEIMER'S DISEASE

  • 7.1 Incidence of Alzheimer's Disease
  • 7.2 Projected Number of People Aged 65 and Older with Alzheimer's Disease in the US
  • 7.3 Cost of Care by Payment Source for US Alzheimer's Patients
    • 7.3.1 Total Cost of Health Care, Long-Term Care, and Hospice for US AD Patients
  • 7.4 Currently Available Medications for Alzheimer's Disease
  • 7.5 CIRM Funding for Alzheimer's Research
  • 7.6 Transplantation of Stem Cells for AD
    • 7.6.1 Gene Therapy for AD

8. PARKINSON'S DISEASE

  • 8.1 Incidence of Parkinson's Disease
  • 8.2 CIRM Grants Targeting Parkinson's Disease
  • 8.3 Current Medications for PD
  • 8.4 Potential for Cell Therapy in Parkinson's Disease
  • 8.5 Gene Therapy for PD

9. AMYOTROPHIC LATERAL SCLEROSIS

  • 9.1 Incidence of ALS
  • 9.2 Symptomatic Treatments in ALS Patients
  • 9.3 CIRM Grants Targeting ALS
  • 9.4 Companies Focusing on Stem Cell Therapy for ALS
  • 9.5 Cell Therapy for ALS

10. MULTIPLE SCLEROSIS

  • 10.1 Incidence of MS
  • 10.2 Medications for MS
  • 10.3 Neural Stem Cells' Application in Multiple Sclerosis
  • 10.4 Stimulation of Endogenous NSCs with Growth Factors for MS Treatment
  • 10.5 CIRM Grants Targeting MS

11. STROKE

  • 11.1 Incidence of Stroke
  • 11.2 Currently Available Medication for Stroke
  • 11.3 Stem Cell-Based Therapies for Stroke
  • 11.4 Various Stem Cell Types Used in Stroke Experimental Studies
  • 11.5 Ongoing Clinical Trials for Stroke Using Stem Cells
  • 11.6 CIRM Grants Targeting Stroke

12. MARKET ANALYSIS

  • 12.1 Current Stem Cell Landscape
    • 12.1.1 Number of Stem Cell Product Candidates
    • 12.1.2 Commercial Stem Cell Therapy Development by Geography
    • 12.1.3 Commercially Attractive Therapeutic Areas
    • 12.1.4 Major Companies Investing in Stem Cell Industry
    • 12.1.5 Venturing of Big Pharma into Stem Cell Therapy Sector
  • 12.3 Major Clinical Milestones in Cell Therapy Sector
    • 12.3.1 TiGenics' Cx601
    • 12.3.2 Mesoblast Ltd. and JCR Pharmaceuticals Co., Ltd.
    • 12.3.3 Chiesi's Holocar
    • 12.3.4 ReNeuron's Retinitis Pigmentosa Cell Therapy Candidate
    • 12.3.5 Orphan Drug Designation to Pluristem's PLX-PAD Cells
  • 12.4 Major Anticipated Cell Therapy Clinical Data Events in 2016
  • 12.5 Global Market for Cell Therapy Products
    • 12.5.1 Global Market for Neural Stem Cells

13. SELECTED COMPANY PROFILES

  • 13.1 Asterias Biotherapeutics, Inc.
    • 13.1.1 AST-OPC1
  • 13.2 Athersys Inc
    • 13.2.1 MultiStem Programs
    • 13.2.2 Ischemic Stroke
    • 13.2.3 Clinical Programs (Stroke Phase II)
  • 13.3 Axiogenesis AG / Pluriomics (Merged to form Ncardia)
    • 13.3.1 Peri.4U - Human iPS Cell-Derived Peripheral Neurons
    • 13.3.2 Dopa.4U - Human iPS Cell-Derived Dopaminergic Neurons
    • 13.3.3 CNS.4U-Human iPS Cell-Derived Central Nervous System Cells
    • 13.3.4 Astro.4U-Human iPS Cell-Derived Astrocytes
  • 13.4 AxoGen, Inc
    • 13.4.1 Avance Nerve Graft
    • 13.4.2 AxoGuard Nerve Connector
    • 13.4.3 AxoGuard Nerve Protector
    • 13.4.4 AxoTouch Two-Point Discriminator
  • 13.5 BrainStorm Cell Therapeutics
    • 13.5.1 NurOwn in the Clinic
  • 13.6 Cellular Dynamics International, Inc.
    • 13.6.1 iCell Neurons
    • 13.6.2 iCell Astrocytes
    • 13.6.3 iCell DopaNeurons
  • 13.7 Celther Polska
    • 13.7.1 Cell Lines
  • 13.8 Cellartis AB
    • 13.8.1 hESC-Derived Mesenchymal Progenitor Cells
    • 13.8.2 Human Neural Stem Cells
    • 13.8.3 Culture System for iPSC
  • 13.9 CellCure Neurosciences Ltd.
    • 13.9.1 Technology
    • 13.9.2 New Candidate Treatment for Retinal Diseases
  • 13.10 Celvive, Inc.
    • 13.10.1 Spinal Cord Injury
    • 13.10.2 Research and Development
  • 13.11 Merck Millipore
    • 13.11.1 Human Neural Stem Lines
  • 13.12 International Stem Cell Corporation
    • 13.12.1 Neural Stem Cells
  • 13.13 Kadimastem Ltd.
    • 13.13.1 Drug Discovery for Neural Diseases
    • 13.13.2 Human Oligodendrocyte Drug-Screening Assays
  • 13.14 Living Cell Technologies Limited
    • 13.14.1 NTCELL
  • 13.15 MEDIPOST
    • 13.15.1 NEUROSTEM
  • 13.16 Neuralstem Inc.
    • 13.16.1 NSI-566 for ALS
    • 13.16.2 NSI-566 for SCI
    • 13.16.3 NSI-566 for Ischemic Stroke
  • 13.17 NeuroGeneration Inc.
    • 13.17.1 Drug Discovery
    • 13.17.2 Biotherapeutics
  • 13.18 Neurona Therapeutics Inc.
    • 13.18.1 Technology
  • 13.19 Ocata Therapeutics Inc. (Acquired by Astellas Pharma for $379M in Nov. 2015)
    • 13.19.1 Focus on Neuroscience
  • 13.20 Opexa Therapeutics, Inc
    • 13.20.1 Tcelna
    • 13.20.2 OPX-212
    • 13.20.3 Abili-T Clinical Study
  • 13.21 ReNeuron Group PLC
    • 13.21.1 Products and Technologies
    • 13.21.3 Human Retinal Progenitor Cells
    • 13.21.4 Exosome Platform
    • 13.21.5 ReNcell Products
  • 13.22 RhinoCyte, Inc.
    • 13.22.1 Research
  • 13.23 Roslin Cells Ltd.
    • 13.23.1 Custom iPSC Generation
  • 13.24 SanBio, Inc.
    • 13.24.1 SB623
    • 13.24.2 SB618
  • 13.25 Saneron CCEL Therapeutics Inc.
    • 13.25.1 U-CORD-CELL Program
    • 13.25.2 SERT-CELL Program
  • 13.26 StemCells, Inc.
    • 13.26.1 Clinical Programs
    • 13.26.2 HuCNS-SC (human neural stem cells)
    • 13.26.3 Proof of Concept
    • 13.26.4 Proof of Safety and Initial Efficacy
    • 13.26.5 Spinal Cord Injury
    • 13.26.6 Age-Related Macular Degeneration
    • 13.26.7 Pelizaeus-Merzbacher Disease
    • 13.26.8 Neuronal Ceroid Lipofuscinosis
  • 13.27 Stemedica Cell Technologies, Inc.
    • 13.27.1 Technology
    • 13.27.2 Products
      • 13.27.2.1 Stemedyne-MSC
      • 13.27.2.2 Stemedyne-NSC
      • 13.27.2.3 Stemedyne-RPE
  • 13.28 STEMCELL Technologies, Inc.
    • 13.28.1 Cell Culture Media for NSC and Progenitor Cells
  • 13.29 Talisman Therapeutics Ltd.
  • 13.30 Xcelthera INC
    • 13.30.1 Technology Platforms
    • 13.30.2 PluriXcel-DCS Technology
    • 13.30.3 PluriXcel-SMI Technology
    • 13.30.4 PlunXcel-SMI Neuron Technology
    • 13.30.5 PluriXcel-SMI Heart Technology
    • 13.30.6 Products
      • 13.30.6.1 Xcel-hNuP
      • 13.30.6.2 Xcel-hNu
      • 13.30.6.3 Xcel-hCardP
      • 13.30.6.4 Xcel-hcM

APPENDIX

  • Appendix 1: Globally Distributed Stem Cell and Cell Therapy Companies

INDEX OF FIGURES

  • FIGURE 3.4: Types of Specialized Cells Derived from Stem Cells
  • FIGURE 3.5: Major Three Neural Lineages from Neural Stem Cells
  • FIGURE 3.6: Structure of a Neuron
  • FIGURE 3.7: Structure of Astrocytes
  • FIGURE 3.8: Structure of Oligodendrocytes
  • FIGURE 5.1: Approaches for Neural Stem Replacement for Neurodevelopmental Disorders
  • FIGURE 6.1: Causes of Spinal Cord Injuries
  • FIGURE 6.2: Neurological Level and Extent of Lesion in Spinal Cord Injuries
  • FIGURE 6.3: Types and Share of Different Types of Stem Cells Used in SCI Clinical Trials
  • FIGURE 7.1: Ages of People with Alzheimer's Disease in the US
  • FIGURE 7.2: Number of People Aged 65 and Older with Alzheimer's Disease in the US, 2050
  • FIGURE 7.3: Cost of Care by Payment Source for US Alzheimer's Patients
  • FIGURE 12.1: Stem Cell Therapy Development
  • FIGURE 12.2: Number of Therapies by Phase
  • FIGURE 12.3: Global Market for NSCs, Through 2022
  • TABLE 3.1: NSCs, NPCs, and their Lineage-Specific Markers
  • TABLE 3.2: Characteristics of Different Types of Stem Cells
  • TABLE 4.1: Sources of NSCs and Advantages and Disadvantages in their Applications
  • TABLE 4.2: Different Types of NSCs and their Basal Properties
  • TABLE 4.3: Advantages and Disadvantages of iPSCs Utilization
  • TABLE 4.4: Methods Used to Generate iPSCs
  • TABLE 4.5: Chemicals Used for Neural Differentiation of iPSCs
  • TABLE 4.6 Small-Molecule-Based Culture Protocols for Inducing hPSCs Differentiation
  • TABLE 4.7: Compounds Used in Neural Stem Cell Research
  • TABLE 4.8: Synthetic Compounds Used to Induce NSC Differentiation into Neurons
  • TABLE 4.9: Natural Products Known to Affect NSC Survival, Proliferation, and Differentiation
  • TABLE 4.10: Ongoing Clinical Trials of Fetal Stem Cell Transplantation for Neurological Diseases
  • TABLE 4.11: The Various Methods of Isolation, Culture, and Expansion of aNSCs
  • TABLE 4.12: Preclinical Results (Rat) of aNSCs against Neurodegenerative Diseases
  • TABLE 4.13: Trial ID & Title of Clinical Trials of aNSCs against Neurodegenerative Diseases
  • TABLE 4.14: Trial ID, Cell Source, Location, and Phases of Current Clinical Trials of aNSCs
  • TABLE 5.1: Conventional Treatments for Alzheimer's, Parkinson's, and Huntington's Diseases
  • TABLE 5.2: NSC-Based Approaches for Neurodegenerative Diseases
  • TABLE 5.3: Some Recent Clinical Trials Using NSCs for Treating Neurological Diseases
  • TABLE 5.4: NCT Numbers & Titles of Clinical Trials Using NSCs for Neurodegenerative Diseases
  • TABLE 5.5: Status of Different Clinical Trials Using NSCs for Neurodegenerative Diseases
  • TABLE 5.6: NCT Number and Titles of Clinical Trials for Neurodevelopmental Disorders
  • TABLE 5.7: Status of Clinical Trials Using NSCs for Neurodevelopmental Diseases
  • TABLE 6.1: Annual and Lifetime Cost of Treating SCI Patients in the US
  • TABLE 6.2: Oral Medications and Other Treatment Options for SCI
  • TABLE 6.3: CIRM's Grants Targeting Spinal Cord Injury
  • TABLE 6.4: Genes Used for Engineering Cells
  • TABLE 6.5: Preclinical SPI Trials Using iPSCs/ESCs for SCI
  • TABLE 6.6: Preclinical Spinal Cord Injury Trials Using Mesenchymal Stromal Cells
  • TABLE 6.7: Preclinical Spinal Cord Injury Trials Using NSCs/NPCs
  • TABLE 6.8: Preclinical SCI Trials Using Olfactory Ensheathing Cells
  • TABLE 6.9: Preclinical SCI Trials Using Schwann Cells
  • TABLE 6.10: SCI Models and Effectiveness of Neuronal Regeneration
  • TABLE 6.11: Clinical Trials in Different Countries for SCI
  • TABLE 7.1: Total Cost of Health Care, Long-Term Care, and Hospice for US Alzheimer's Patients
  • TABLE 7.2: Currently Available Pharmacologic Therapies for Alzheimer's Disease
  • TABLE 7.3: CIRM Funding for Alzheimer's Research
  • TABLE 7.4: Stem Cell Therapy for AD in Mice Models
  • TABLE 7.5: Gene Therapy for AD
  • TABLE 8.1: CIRM Grants Targeting Parkinson's Disease
  • TABLE 8.2: Medications for Motor Symptoms in PD
  • TABLE 8.3: Advantages and Disadvantages of Stem Cell Types Used in PD
  • TABLE 8.4: Approaches Used in Current Gene Therapy Clinical Trials for PD
  • TABLE 9.1: Symptomatic Treatments in ALS Patients
  • TABLE 9.2: CIRM Grants Targeting ALS
  • TABLE 9.4: Companies Focusing on Various Strategies for ALS
  • TABLE 9.6: Examples of Clinical Trials for Amyotrophic Lateral Sclerosis
  • TABLE 10.1: Currently Available Medications for MS
  • TABLE 10.2: Available Studies Related to the Use of NSCs for Multiple Sclerosis
  • TABLE 10.3: Growth Factors and Secreted Molecules Used for Stimulating Endogenous NSCs
  • TABLE 10.4: CIRM Grants Targeting MS
  • TABLE 11.1: An Overview of NSC Transplantation Experiments in Ischemic Stroke Models
  • TABLE 11.2: Representative Experimental Studies of Various Cell-Based Therapies for Stroke
  • TABLE 11.3: Ongoing Clinical Trials of Cell-Based Therapies for Stroke
  • TABLE 11.4: CIRM Grants Targeting Stroke
  • TABLE 12.1: Number of Therapies by Phase
  • TABLE 12.2: Stem Cell Product Candidates in Various Stages by Therapeutic Area
  • TABLE 12.3: Stem Cell Therapies in Phase III and Pre-Registration as of 2015
  • TABLE 12.4: Companies with Active Stem Cell Therapy Pipelines
  • TABLE 12.5: Big Pharma's Involvement in Stem Cell Sector
  • TABLE 12.6: Major Anticipated Cell Therapy Clinical Data Events
  • TABLE 12.7: Global Market for Neural Stem Cells (NSCs), Through 2022
  • TABLE 13.1: Neuralstem Inc.'s Cell Therapy Products in Development
  • TABLE 13.2: Opexa's Product Pipeline
  • TABLE 13.3: ReNeuron's Pipeline Candidates
  • TABLE 13.4: SanBio's Product Pipeline
  • TABLE 13.5: STEMCELL Technologies' Cell Culture Media for NSCs
  • TABLE App. 1.1: Stem Cell and Cell Therapy Companies
  • TABLE App. 2.1: Sixty US Spine Surgeons on the Forefront of Biologics and Stem Cells
Back to Top