株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

インドネシアの地熱発電産業の分析

Analyzing Geothermal Power in Indonesia

発行 Aruvian's R'search 商品コード 249064
出版日 ページ情報 英文 153 Pages
即納可能
価格
本日の銀行送金レート: 1USD=114.71円で換算しております。
Back to Top
インドネシアの地熱発電産業の分析 Analyzing Geothermal Power in Indonesia
出版日: 2013年03月01日 ページ情報: 英文 153 Pages
概要

インドネシアの地熱発電は、世界第2位の発電量と、世界最大の発電能力(28,000メガワット)を有しています。慢性的な電力不足や、化石燃料の急速な枯渇、今後のエネルギー危機への対応のためにも、インドネシア政府は、大型地熱発電プロジェクト2件(合計10,000メガワット分)を認可したほか、地熱を中心とする再生可能エネルギー発電の開発を進めていきたいと考えています。

当レポートでは、インドネシアにおける地熱発電産業の現状と将来見通しについて分析し、地熱発電の技術的概略や、全世界・アジア太平洋地域およびインドネシア国内の産業構造や動向見通し、主要企業のプロファイルと地熱発電事業といった情報を盛り込んで、概略以下の構成でお届けします。

エグゼクティブ・サマリー

地熱発電の概略

  • 地熱エネルギーの認識:歴史的展望
  • 地熱エネルギーの活用:現在の状況
  • 地熱エネルギーの発生源
  • 地球中核部からのエネルギー:地熱システム
  • 地熱活動貯留層の特定
  • 地熱資源の評価
  • 地熱資源の商業ベースでの探査
  • 地熱資源の探査過程
  • 地熱探査計画:リスク vs. 費用
  • 地熱発電で利用される技術
    • バイナリサイクル発電技術
    • 従来型蒸気タービン技術
  • 新たな技術
    • 強化型地熱システム
    • 混合作動流体技術
  • 地熱掘削技術とそのコスト

世界の地熱発電産業

  • イントロダクション
  • 地熱資源からの発電量
  • 地熱発電の設備容量

アジア太平洋地域の地熱発電産業

  • 産業概要
  • 地熱資源からの発電量
  • 地熱発電の設備容量
  • 地域別内訳
  • 業界内の主な資本取引

インドネシアの地熱発電産業

  • 産業概要
  • 地熱資源からの発電量
  • 地熱発電の設備容量
  • 産業の分類
  • 産業関連規制
  • 主な産業プロジェクト

主要企業

  • Chevron Geothermal Indonesia
  • PT Pertamina
    • 企業プロファイル
    • 事業部門の分析
    • SWOT分析
  • PT Indonesia Power
    • 企業プロファイル
    • 事業部門の分析
    • SWOT分析
  • 富士電機
    • 企業プロファイル
    • 事業部門の分析
    • 業界内のプレゼンス
    • SWOT分析
  • 三菱重工業
    • 企業プロファイル
    • 事業部門の分析
    • 業界内のプレゼンス
    • SWOT分析
  • 東芝
    • 企業プロファイル
    • 事業部門の分析
    • 業界内のプレゼンス
    • SWOT分析

付録

  • 世界の地熱発電関連組織
  • 図表

分析手法

用語集

図表一覧

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

The geothermal industry in Indonesia is the second largest in the world and harbors the largest potential in geothermal industry itself standing at a staggering 28,000 MW. There are around 18 locations and more than 250 geothermal fields across the country and it is said to have the highest geothermal potential across the world. It has numerous active volcanoes associated with a large concentration of high temperature geothermal systems on or close to the plate margins in Sumatra, Java, Nusa, Tenggara, Sulawesi and Halmahera. Indonesia has already established two crash programs to increase power generation by 10,000 megawatts in a bid to resolve chronic power shortages in Southeast Asia's biggest economy. It generates most of its electricity from the thermal sources.

Due to the fast depletion of the thermal sources, it wants to develop renewable sources of energy in order to prepare for any future energy crisis. The renewable sources of energy account for approximately 17% of the power generation in the country. The share of geothermal in the renewable sources is the highest and stands at around 53%.

The geothermal industry's problems are echoed elsewhere in Indonesia, which has Southeast Asia's largest economy but desperately needs to improve its roads, ports and other elements of its infrastructure. Jakarta's ability to nurture such investments will determine whether Indonesia's economic growth, running around 6.5%, sputters out or whether the country joins China and India as the next Asian economic juggernaut.

Getting the geothermal industry up to snuff could require tens of billions of dollars in new facilities. The Indonesian government says it supports the geothermal-power industry but that it will take time to resolve various problems. Jakarta wants to create a revolving fund of more than $100 million to finance exploration work and is expected soon to approve government guarantees for geothermal power producers.

Aruvians Rsearch analyzes the Geothermal Power in Indonesia in its latest research offering Analyzing Geothermal Power in Indonesia.

The report is a comprehensive coverage of the geothermal industry in the region as well as in Indonesia.

The report begins with an introduction to geothermal power. We analyze the utilization of geothermal energy, the grading of geothermal resources, technologies used in geothermal power generation, emerging technologies, amongst others.

We analyze the global geothermal power market before the analysis of the geothermal market in Indonesia and in Asia Pacific. We first analyze the global geothermal power industry through power generated from geothermal resources worldwide and global geothermal power installed capacity. We further look at the factors impacting the global geothermal power industry such as growth drivers and challenges facing the global geothermal industry.

Geothermal power in Asia Pacific is analyzed through power generated from geothermal resources, installed capacity of geothermal power, regional segmentation of the industry and the major industry deals that have taken place in recent years.

For the geothermal industry in Indonesia, we analyze the power generated from geothermal resources, geothermal power installed capacity, industry segmentation by renewable energy technologies, regulatory frameworks governing the market in Indonesia, and major industry projects, both existing and upcoming.

Major global industry players are analyzed through a corporate profile, an analysis of their major business segments, the presence of these companies in the geothermal market, and a SWOT analysis.

Aruvians Rsearch's report Analyzing Geothermal Power in Indonesia is a complete guide to this rapidly growing industry.

Table of Contents

A. Executive Summary

B. Introduction to Geothermal Power

  • B.1. The Recognition of Geothermal Energy - Historical Perspective
  • B.2. Utilization of Geothermal Energy - Current Day
  • B.3. Source of Geothermal Energy Generation
  • B.4. Energy from the Earth's Core - Geothermal Systems
  • B.5. Identifying Geothermal Activity Reservoirs
  • B.6. Grading Geothermal Resources
  • B.7. Exploring Geothermal Resources Commercially
  • B.8. Geothermal Resource Exploration Process
  • B.9. Geothermal Exploration Programs - Risk vs. Cost
  • B.10. Technologies Used in Geothermal Power Generation
    • B.10.1. Binary Cycle Plant Technology
    • B.10.2. Conventional Steam Turbine Technology
  • B.11. Emerging Technologies
    • B.11.1. Enhanced Geothermal System
    • B.11.2. Mixed Working Fluid Technology
  • B.12. Geothermal Drilling Technology and Costs

C. Global Geothermal Power Industry

  • C.1. Introduction
  • C.2. Power Generation from Geothermal Resources
  • C.3. Global Geothermal Power Installed Capacity

D. Geothermal Power Industry in Asia Pacific

  • D.1. Industry Overview
  • D.2. Power Generation from Geothermal Resources in Asia Pacific
  • D.3. Geothermal Power Installed Capacity in Asia Pacific
  • D.4. Regional Segmentation of the Industry
  • D.5. Major Industry Deals

E. Geothermal Power Industry in Indonesia

  • E.1. Industry Overview
  • E.2. Power Generation from Geothermal Resources in Indonesia
  • E.3. Geothermal Power Installed Capacity in Indonesia
  • E.4. Industry Segmentation
  • E.5. Industry Regulations
  • E.6. Major Industry Projects

F. Major Industry Players

  • F.1. Chevron Geothermal Indonesia
  • F.2. PT Pertamina
    • F.2.1. Corporate Profile
    • F.2.2. Business Segment Analysis
    • F.2.3. SWOT Analysis
  • F.3. PT Indonesia Power
    • F.3.1. Corporate Profile
    • F.3.2. Business Segment Analysis
    • F.3.3. SWOT Analysis
  • F.4. Fuji Electric Co Ltd
    • F.4.1. Corporate Profile
    • F.4.2. Business Segment Analysis
    • F.4.3. Industry Presence
    • F.4.4. SWOT Analysis
  • F.5. Mitsubishi Heavy Industries
    • F.5.1. Corporate Profile
    • F.5.2. Business Segment Analysis
    • F.5.3. Industry Presence
    • F.5.4. SWOT Analysis
  • F.6. Toshiba Corporation
    • F.6.1. Corporate Profile
    • F.6.2. Business Segment Analysis
    • F.6.3. Industry Presence
    • F.6.4. SWOT Analysis

G. Appendix

  • G.1. Global Geothermal Associations
  • G.2. Figures & Tables

H. Research Methodology

I. Glossary of Terms

List of Figures

  • Figure 1: The Earth's Crust, Mantle, & Core. Top Right: A Section through the Crust & the Uppermost Mantle
  • Figure 2: Schematic Cross-Section Showing Plate Tectonic Processes
  • Figure 3: World Pattern of Plates, Oceanic Ridges, Oceanic Trenches, Subduction Zones, & Geothermal Fields
  • Figure 4: Representation of an Ideal Geothermal System
  • Figure 5: Model of a Geothermal System
  • Figure 6: Formation of a Geothermal Reservoir
  • Figure 7: Diagram Showing the Different Categories of Geothermal Resources
  • Figure 8: Workings of a Binary Cycle Geothermal Plant
  • Figure 9: Workings of a Flash/Binary Cycle Geothermal Plant
  • Figure 10: Workings of a Dry Steam Geothermal Power Plant
  • Figure 11: Workings of a Flash Steam Geothermal Power Plant
  • Figure 12: Workings of a Double Flash Steam Geothermal Power Plant
  • Figure 13: Completed Oil, Gas, and Geothermal Well Costs as a Function of Depth
  • Figure 14: Ring of Fire
  • Figure 15: Geothermal Electricity Production by Countries, and Installed Capacities (MW), 2011
  • Figure 16: Global Power Generated from Geothermal Resources (GWh), 2002-2022
  • Figure 17: Installed Capacity of Geothermal Power Worldwide (MW), 2002-2022
  • Figure 18: Power Generated from Geothermal Resources in Asia Pacific (GWh), 2002-2022
  • Figure 19: Installed Capacity of Geothermal Power in Asia Pacific (MW), 2002-2022
  • Figure 20: Share of Geothermal Power Market in Asia Pacific by Country (%), 2011
  • Figure 21: Number of Geothermal Project Deals in Recent Times in Asia Pacific
  • Figure 22: Types of Geothermal Deals in the Industry in Recent Times
  • Figure 23: Geothermal Fields in Indonesia
  • Figure 24: Power Generated from Geothermal Resources in Indonesia (GWh), 2002-2022
  • Figure 25: Installed Capacity of Geothermal Power in Indonesia (MW), 2002-2022
  • Figure 26: Renewable Power Generation in Indonesia by Technologies (%), 2011
  • Figure 27: Conceptual Two-Well Enhanced Geothermal System in Hot Rock in a Low-Permeability Crystalline Basement Formation
  • Figure 28: Estimated Total Geothermal Resource Base and Recoverable Resource Given in EJ or 1018 Joules
  • Figure 29: An Atmospheric Exhaust Geothermal Power-Plant
  • Figure 30: A Condensing Geothermal Power-Plant
  • Figure 31: A Geothermal Binary Power Plant
  • Figure 32: Flow Diagram of the Geothermal District Heating System of Reykjavik
  • Figure 33: Application of Ground-Coupled Heat Pump System
  • Figure 34: A Heat Pump in Heating Mode
  • Figure 35: Binary Cycle Plant
  • Figure 36: Dry Steam Plant
  • Figure 37: Flashed Steam Plant
  • Figure 38: Cascade Uses of Geothermal Energy

List of Tables

  • Table 1: Classification of Geothermal Resources (°C)
  • Table 2: Different Types of Technologies Used by Geothermal Plants
  • Table 3: Global Power Generated from Geothermal Resources (GWh), 2002-2022
  • Table 4: Installed Capacity of Geothermal Power Worldwide (MW), 2002-2022
  • Table 5: Power Generated from Geothermal Resources in Asia Pacific (GWh), 2002-2022
  • Table 6: Installed Capacity of Geothermal Power in Asia Pacific (MW), 2002-2022
  • Table 7: Share of Geothermal Power Market in Asia Pacific by Country (%), 2011
  • Table 8: Number of Geothermal Project Deals in Recent Times in Asia Pacific
  • Table 9: Types of Geothermal Deals in the Industry in Recent Times
  • Table 10: Major Geothermal Deals in Asia Pacific in Recent Times
  • Table 11: Power Generated from Geothermal Resources in Indonesia (GWh), 2002-2022
  • Table 12: Installed Capacity of Geothermal Power in Indonesia (MW), 2002-2022
  • Table 13: Renewable Power Generation in Indonesia by Technologies (%), 2011
  • Table 14: Geothermal Projects in Indonesia
  • Table 15: Upcoming/Under Development Geothermal Projects in Indonesia
  • Table 16: Summary of Nonhydrothermal US Geothermal Resource-Base Estimates
  • Table 17: Energy & Investment Costs for Electric Energy Production from Renewables
  • Table 18: Energy & Investment Costs for Direct Heat from Renewables
Back to Top