株式会社グローバルインフォメーション
TEL: 044-952-0102
表紙
市場調査レポート

水素社会の分析

Analyzing the Hydrogen Economy 2016

発行 Aruvian's R'search 商品コード 235203
出版日 ページ情報 英文 150 Pages
即納可能
価格
本日の銀行送金レート: 1USD=114.43円で換算しております。
Back to Top
水素社会の分析 Analyzing the Hydrogen Economy 2016
出版日: 2017年01月01日 ページ情報: 英文 150 Pages
概要

当レポートでは、世界における水素社会 (水素関連市場) の現状と将来展望について分析し、水素の特質と生産・輸送方法、技術的課題、コスト構造、環境・経済・社会への影響、各国政府および国際社会の普及促進活動、輸送用媒体としてのアンモニアの特質と現在の市況、といった情報を盛り込んでお届けします。

エグゼクティブ・サマリー

水素および水素社会の概略

  • 水素とは
  • 水素の特性
  • 水素社会におけるエネルギー需要
  • 水素の生産工程
  • 水素のパッケージング
  • 水素の輸送
  • 水素の転換

世界の水素エネルギーシステム

現在の水素産業

水素社会の技術的課題とコスト障壁

  • 生産・流通・貯蔵に関する課題
  • 二酸化炭素貯留
  • 燃料電池

水素の環境への影響

水素生産方法の環境への影響

水素社会の環境への影響

  • イントロダクション
  • 大気中の水素
  • 水素の循環 (モデル化シナリオ)
  • 水素は温室効果ガスなのか
  • 温室効果ガスの影響と水素社会
  • 水素社会の中での水蒸気排出
  • 結論

水素社会における燃料電池の役割

水素社会の開発

  • 水素インフラの開発と関連コスト
  • 政府の支援に対する要望
  • 水素利用の予測

水素の将来性に関する、主な政策的な疑問

水素社会の社会経済的な特徴

  • なぜ水素を開発するのか?
  • 水素技術
    • 生産
    • 水素の輸送・流通
    • 水素の貯蔵
  • 水素の転換と利用
    • 発電
    • 交通での利用

発展途上国における水素

  • 各国のエネルギー政策担当者への提言
  • 国際機関・NGOの役割

炭化水素由来の水素と炭素隔離

再生可能資源由来水素の将来性と応需生産戦略

水素社会におけるアンモニアの役割

  • イントロダクション
  • アンモニアの性質
  • アンモニアの生産
    • 技術的説明
    • エネルギー利用
  • アンモニアの分解
  • 無水アンモニアの貯蔵
  • 水素運搬用物質としてのアンモニアの利用
    • 往復運搬
    • 片道運搬
    • 既存のアンモニア流通網
    • 操業中のアンモニア・パイプライン
    • アンモニア・タンカー
    • アンモニアのトラック輸送
    • アンモニアの流通コスト
  • アンモニアの安全性の問題
  • 結論

水素燃料の代替物:合成メタノール

水素社会の将来展望

ケーススタディ

  • 米国
  • 日本
  • EU (欧州連合)
  • オーストラリア
  • アイスランド
  • カナダ
  • フランス
  • ドイツ
  • イタリア
  • 韓国
  • 中国
  • ブラジル
  • ロシア

付録

用語集

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

A hydrogen economy is a hypothetical economy in which energy is stored and transported as hydrogen (H2). Various hydrogen economy scenarios can be envisaged using hydrogen in a number of ways. Proponents of a hydrogen economy suggest that hydrogen is an environmentally cleaner source of energy to end-users, particularly in transportation applications, without release of pollutants (such as greenhouse gasses) at the point of end use; and that these advantages may hold similarly with use of hydrogen produced with energy from fossil fuels, if carbon capture or carbon sequestration methods are utilized at the site of energy or hydrogen production.

Meanwhile, critics of a hydrogen economy argue that for many planned applications of hydrogen, direct use of energy in the form of electricity, chemical batteries and fuel cells, and production of liquid synthetic fuels from carbon dioxide, might accomplish many of the same net goals of a hydrogen economy, while requiring only a small fraction of the investment in new infrastructure.

The latest offering from Aruvian Research brings you a complete analysis of the Hydrogen Economy. Analyzing the Hydrogen Economy 2016 report contains a focused socio-economic, political, and environmental analysis of the factors affecting the hydrogen economy. The report contains an analysis of the technologies involved in hydrogen production, hydrogen storage, hydrogen conversion, and much more.

The report also carries in-depth case studies on the various countries which are actively involved in the hydrogen economy. An analysis of the technical barriers, other issues, cost effectiveness affecting the hydrogen economy, and the procedure involved in the actually implementation of the hydrogen economy are all discussed in great details inside this report. Determining the future of the hydrogen economy and the energy industry becomes a lot easier with this report.

Table of Contents

A. Executive Summary

B. Introduction to Hydrogen and the Hydrogen Economy

  • B.1 What is Hydrogen?
  • B.2 Properties of Hydrogen
  • B.3 Energy Needs of a Hydrogen Economy
  • B.4 Production Processes of Hydrogen
    • B.4.1 Electrolysis
    • B.4.2 Reforming
    • B.4.3 Hydrogen from Coal
    • B.4.4 Hydrogen from Natural Gas
    • B.4.5 Hydrogen from Nuclear Energy
    • B.4.6 Hydrogen from Renewable Energy Sources
  • B.5 Hydrogen Production Costs from Various Methods
  • B.6 Hydrogen Packaging
  • B.7 Compression Process
    • B.7.1 Hydrogen Liquefaction
    • B.7.2 Physical Hydrides
    • B.7.3 Chemical Hydrides
  • B.8 Delivering Hydrogen
    • B.8.1 On Road Delivery
    • B.8.2 Delivery through Pipelines
    • B.8.3 On-site Generation
  • B.9 Delivered Hydrogen Cost Estimates
  • B.10 Transferring Hydrogen

C. A Global Hydrogen Energy System

D. Current Hydrogen Industry

E. Broad Issues with the Hydrogen Economy

F. Technical Issues and Cost Barriers to the Hydrogen Economy

  • F.1 Issues with Production, Distribution, Storage
  • F.2 Carbon Capture and Storage
  • F.3 Fuel Cells

G. Environmental Implications of Hydrogen

H. Environmental Impacts of Hydrogen Production Methods

I. Environmental Impact of the Hydrogen Economy

  • I.1 Introduction
  • I.2 Hydrogen in the Atmosphere
  • I.3 Hydrogen in the Troposphere - A Modeled Scenario
  • I.4 Is Hydrogen a GHG?
  • I.5 GHG Consequences and the Hydrogen Economy
  • I.6 Water Vapor Emissions of a Hydrogen Economy
  • I.7 Conclusion

J. Role of Fuel Cells in the Hydrogen Economy

K. Developing the Hydrogen Economy

  • K.1 Developing the Hydrogen Infrastructure and Associated Costs
  • K.2 Required Government Support
  • K.3 Projections of Hydrogen Use

L. Key Policy Questions in the Future of Hydrogen

M. Socio-Economic Features of the Hydrogen Economy

  • M.1 Why Develop Hydrogen?
  • M.2 Hydrogen Technologies
    • M.2.1 Production
    • M.2.2 Transportation and Distribution of Hydrogen
    • M.2.3 Hydrogen Storage
  • M.3 Conversion of Hydrogen and Uses
    • M.3.1 Electricity Generation
    • M.3.2 Applications in Transportation

N. Hydrogen for Developing Countries

  • N.1 Suggestions for National Energy Policy Makers
  • N.2 Role of International Governments and NGOs

O. Hydrogen from Hydrocarbons and Carbon Sequestration

P. The Potential of Renewable Hydrogen and Required Production Strategies

Q. Role of Ammonia in Hydrogen Economy

  • Q.1 Introduction
  • Q.2 Properties of Ammonia
  • Q.3 Production of Ammonia
    • Q.3.1 Technical Description
    • Q.3.2 Energy Usage
  • Q.4 Decomposition of Ammonia
  • Q.5 Storing Anhydrous Ammonia
  • Q.6 Using Ammonia as a Hydrogen Carrier
    • Q.6.1 Two-way Carriers
    • Q.6.2 One-way Carriers
    • Q.6.3 Existing Ammonia Distribution
    • Q.6.4 Ammonia Pipelines in Operation
    • Q.6.5 Ammonia Tanker Ships
    • Q.6.6 Ammonia Trucking
    • Q.6.7 Ammonia Distribution Costs
    • Q.6.8 Safety Issues Associated with Ammonia
  • Q.7 Conclusion

R. An Alternative to Hydrogen Fuel - Synthetic Methanol

S. Outlook for the Hydrogen Economy

T. Case Studies

  • T.1 Australia
  • T.2 Brazil
  • T.3 Canada
  • T.4 European Union
  • T.5 France
  • T.6 Germany
  • T.7 Iceland
  • T.8 India
  • T.9 Italy
  • T.10 Japan
  • T.11 Korea
  • T.12 Russia
  • T.13 United Kingdom
  • T.14 United States

U. Appendix

V. Glossary of Terms

List of Figures

  • Figure 1: Schematic Representation of an Elemental "Hydrogen Economy"
  • Figure 2: Higher Heating Value per Volume for Different Fuel Options
  • Figure 3: Voltage-Current Characteristics of Hydrogen Electrolyzer & Fuel Cell
  • Figure 4: Energy Input to Electrolyze Water Compared to HHV Energy of Liberated Hydrogen
  • Figure 5: Hydrogen from Wind Power Availability Map of the US
  • Figure 6: Hydrogen from Concentrating Solar Power Availability Map of the US
  • Figure 7: Hydrogen from Biomass Residues Availability Map of the US
  • Figure 8: Ranges in Onsite Hydrogen Production Cost Estimates
  • Figure 9: Adiabatic Compression Work versus Final Pressure for Hydrogen & Methane
  • Figure 10: Energy Required for the Compression of Hydrogen Compared to its Higher Heating Value
  • Figure 11: Typical Energy Requirements for the Liquefaction of Hydrogen versus Plant Capacity
  • Figure 12: Liquefaction Energy Relative to the HHV of Hydrogen versus Plant Capacity
  • Figure 13: Energy Needed to Produce Alkali Metal Hydrides Relative to the HHV Content of the Liberated Hydrogen
  • Figure 14: Energy Needed for the Road Delivery of Fuels Relative to their HHV Energy Content
  • Figure 15: Mass Flow Remaining in Pipeline Relative to the Mass Flow at the Pipeline Inlet, versus Pipeline Length
  • Figure 16: HHV Hydrogen Energy Fed into the Pipeline Inlet Compared to HHV Hydrogen Energy Delivered at the Pipeline Outlet
  • Figure 17: Energy Needed for On-Site Generation of Hydrogen by Electrolysis Stored at 10 MPa and Subsequent Compression to 40 MPa for Rapid Transfer to 35 MPa Vehicle Tanks Relative to the HHV Energy Content of Hydrogen
  • Figure 18: Ranges in Delivered Hydrogen Cost Estimates
  • Figure 19: Schematic Representation of the Transfer of Liquids and Gases
  • Figure 20: Fuel Cell Configuration
  • Figure 21: Greenhouse Gas Emissions from Hydrogen Fuel Cell Vehicle Refueling Pathways
  • Figure 22: Air Pollutant Emissions from Hydrogen Fuel Cell Vehicle Refueling Pathways
  • Figure 23: Linkages between Hydrogen and the Rest of the Energy System
  • Figure 24: Hypothetical Year 2040 Regional U.S. Hydrogen Demand of 10 Quads Per Year and Renewable Production Potential
  • Figure 25: Ammonia Production Costs
  • Figure 26: Conceptual NH3 Fuel Processing System
  • Figure 27: Anhydrous Ammonia Specific Gravity
  • Figure 28: Ammonia Vapor Pressure
  • Figure 29: Volumetric Targets
  • Figure 30: Mass Targets
  • Figure 31: NH3 Pipelines
  • Figure 32: Transition to the Hydrogen Economy Envisaged by the US Hydrogen Program
  • Figure 33: Increase in Global CO2 Concentration
  • Figure 34: Hydrogen Economy & Water Circulation
  • Figure 35: Hydrogen Energy System
  • Figure 36: Hydrogen Economy

List of Tables

  • Table 1: Density and Heating Values of Hydrogen and Methane
  • Table 2: National Research Council Estimates for Hydrogen Produced via SMR of Natural Gas
  • Table 3: Typical Reformer Effluent for SMR of Natural Gas and POx Reformation of Coal
  • Table 4: Energy Input of Alkali Metal Hydride Production
  • Table 5: Energy Consumed for Road Transport of Various Fuels and Hydrogen
  • Table 6: Assumptions & Results for On-Site Hydrogen Production
  • Table 7: Elements of Today's Hydrogen Energy System
  • Table 8: Land and Water Requirements for Renewable Hydrogen Production Methods
  • Table 9: Globally-Integrated Sources and Sinks for Hydrogen
  • Table 10: Hydrogen Production Cost from Fossil Fuel
  • Table 11: Selected Ammonia Properties
  • Table 12: NH3 Production from Alternate Sources
  • Table 13: Equilibrium Ammonia Conversion
  • Table 14: Acute Health Effects
  • Table 15: Hydrogen Commercialization Targets in Japan
  • Table 16: FreedomCAR Hydrogen Storage System Targets
Back to Top