株式会社グローバルインフォメーション
TEL: 044-952-0102
市場調査レポート

ソーラー燃料・人工光合成・水素・燃料電池およびクリーンエネルギーの将来

Solar fuels, artificial photosynthesis, hydrogen, fuel cells and the future of clean energy: Technologies, markets, competitors and opportunities - 2013-2023 analysis and forecasts

発行 Amadee & Company, Inc. 商品コード 262413
出版日 ページ情報 英文 224 Pages
即納可能
価格
本日の銀行送金レート: 1USD=114.77円で換算しております。
Back to Top
ソーラー燃料・人工光合成・水素・燃料電池およびクリーンエネルギーの将来 Solar fuels, artificial photosynthesis, hydrogen, fuel cells and the future of clean energy: Technologies, markets, competitors and opportunities - 2013-2023 analysis and forecasts
出版日: 2013年03月04日 ページ情報: 英文 224 Pages
概要

太陽は、現在の文明社会が石油燃料、原子力および全ての再生可能エネルギー資源から1年間に使用するよりも多くのエネルギーを1時間で地球に供給しています。この太陽エネルギーは、原料または燃料の化学的結合に直接捕獲・貯蔵し、そして必要な時に利用することが可能です。太陽からのエネルギーで意図的に貯蔵されているこれらの化学燃料は、太陽燃料と呼ばれています。50年以上にわたって、科学者は太陽燃料を研究室で生産する可能性を追求しています。

当レポートでは、各種ソーラー燃料技術、水素、燃料電池の現在および将来の需要予測、市場発展因子、アプリケーション、主な戦略的課題と機会、競合状況、主要企業および研究機関のプロファイロなどを提供しており、概略以下の構成でお届けします。

エグゼクティブサマリー

イントロダクション

  • 背景
  • 調査方法・情報源
  • 統計に関する注釈

ソーラー燃料

  • ソーラー燃料とは
  • ソーラー燃料はいかにして将来のエネルギー選択に変化をもたらすのか
  • ソーラーエネルギーの貯蔵と輸送
  • 輸送のための再生可能液体燃料
  • 従来の産業のための再生可能燃料
  • ソーラー燃料と水素の輸送
  • 肥料
  • 医薬品
  • プラスチック
  • 合成燃料
  • 科学における飛躍的進歩
  • 将来の燃料およびエネルギー担体としての水素
  • ソーラーエネルギーの直接捕集の推定能力
  • 石油依存のコスト
  • ソーラー水素製造システム
  • 電解によるPV水素製造
  • より高圧での運転
  • 改良された電解槽
  • 光電気化学システム(PEC)
  • PECの種類
  • 太陽光生物学的水素製造
  • 太陽光によるバイオマスのガス化
  • 太陽熱化学サイクル
  • 発電および電解による太陽熱水素製造
  • 経済
  • 見通し
  • 現在の人工光合成プロジェクト
  • ガバナンス上の課題
  • 主要研究機関

水素

  • 特性
  • 水素の違い
  • 変換係数
  • 位相
  • 共有結合および有機化合物
  • アイソトープ
  • 自然発生
  • 製造方法
  • 現在の製造方法
  • 水蒸気改質
  • 水蒸気改質とコジェネレーション
  • 部分酸化
  • プラズマ改質
  • 石炭
  • 水電解
  • 高圧電解
  • 高温電解
  • 光生物学的水分解
  • 硫黄ヨウ素周期
  • 発酵水素製造
  • 酵素水素製造
  • 生物触媒電解
  • 再生可能水素
  • 水素 vs. 天然ガスコスト
  • 単一および複合精製所
  • アプリケーション
  • 石油
  • その他のアプリケーション
  • 安全対策と予防措置
  • 米国エネルギー省の水素および燃料電池プログラム
  • 水素製造プログラム
  • 水素製造コストの状況
  • 水素の輸送
  • 水素貯蔵プログラム
  • 燃料電池プログラム
  • 基礎研究
  • 米国再生・再投資法(ARRA)

水素およびクリーン技術の将来

  • 過去における世界のエネルギー製造
  • 将来の世界人口
  • 将来における世界の電気エネルギー必要量
  • エネルギー需要予測値の大きな拡大
  • 適正技術における比エネルギー
  • 入手可能な燃料の比エネルギー
  • 石油燃料使用の削減
  • 非適正技術:天然ガスによる発電
  • 非適正技術:天然ガスによる水素製造
  • 適正技術:原子力による水素製造
  • 適正技術:日射
  • エネルギー源の適正な混合
  • エネルギー問題
  • 電力の必要量
  • 二酸化炭素を排出しないエネルギー源
  • 原子力
  • 炭素隔離
  • 再生可能エネルギー
  • 太陽エネルギーの潜在性
  • 太陽光発電のコストと効果
  • 太陽エネルギーの変換戦略
  • 水素経済
  • 電池技術開発の影響
  • バイオ燃料開発の影響
  • 電力貯蔵技術の進歩の影響

燃料電池

  • 概要
  • 自動車用途以外の燃料電池
  • 燃料電池技術
  • 主な燃料電池技術
  • 固体高分子形燃料電池(PEFC)
  • 直接メタノール燃料電池(DMFC)
  • アルカリ形燃料電池(AFC)
  • リン酸形燃料電池(PAFC)
  • 溶融炭酸塩形燃料電池(MCFC)
  • 固体酸化物形燃料電池(SOFC)
  • 再生型燃料電池
  • 燃料電池技術の比較
  • 潜在市場
  • サプライヤー
  • 非常用電源
  • マテリアルハンドリング
  • 熱電併給(CHP)
  • マイクロおよび小型HCPアプリケーション
  • 研究・開発・実証活動
  • 米国エネルギー省の先進製造技術局

市場概要

  • 水素市場の規模
  • アプリケーション別の市場
  • 水素市場のシェア
  • 精製市場の発展因子
  • 水素の新規市場
  • 運輸
  • 発電
  • 燃料電池市場
  • 競合環境

企業プロファイル

研究機関のプロファイル

目次

The sun delivers more energy to the earth in one hour than civilization currently uses from fossil fuels, nuclear power and all renewable energy sources combined in a year. This solar energy can be captured and stored directly in the chemical bonds of a material, or fuel, and then used when needed. These chemical fuels, in which energy from the sun has deliberately been stored, are called solar fuels.

For more than 50 years, scientists have pursued the possibility of producing solar fuels in the laboratory.

There are three approaches:

  • Artificial photosynthesis in which systems made by human beings mimic the natural process;
  • Natural photosynthesis; and
  • Thermochemical approaches.

Significant progress has been made in producing two very important types of fuels:

  • Hydrogen, which can be used as a transport fuel, and is an important feedstock for industry. Hydrogen can be produced by splitting water using sunlight.
  • Carbon-based fuels such as methane or carbon monoxide (used with hydrogen as synthesis gas). These are key feedstocks for making a wide range of industrial products including fertilizers,

This report is focuses on hydrogen produced by solar fuels.

It provides an in-depth look at:

  • Solar fuel technologies including photovoltaic artificial photosynthesis, photoelectrochemical, photobiological and concentrated solar thermal.
  • Hydrogen as a fuel and energy carrier and its production by steam reforming and renewable technologies.
  • Hydrogen, the future of clean energy, and the need for huge amounts of power in the 21st century.
  • Fuel cell technologies, which use hydrogen to electrochemically convert chemical energy into electrical energy.
  • Current and forecasted demand for hydrogen and fuel cells.
  • Market drivers, applications and economics.
  • Key strategic issues.
  • Major opportunities.
  • Competitive landscape.
  • Leading industry players and researchers.

Additionally, profiles of 10 major hydrogen and fuel cell companies in addition to 20 leading research organization are given. The report also includes 74 figures and 40 tables.

Table of Contents

EXECUTIVE SUMMARY

INTRODUCTION

  • Background
  • Methodology and Sources
  • Statistical Notes

SOLAR FUELS

  • What Are Solar Fuels
  • How Would Solar Fuels Change Future Energy Options
  • Storing And Transporting Solar Energy
  • Renewable Liquid Fuels For Transport
  • Renewable Fuels For Established Industries
  • Solar Fuels And Hydrogen Transport
  • Fertilizers
  • Pharmaceuticals
  • Plastics
  • Synthetic Fuels
  • Scientific Breakthroughs
  • Hydrogen As A Future Fuel And Energy Carrier
  • Estimated Potential Of Direct Capture Of Solar Energy
  • Cost Of Oil Dependence
  • Solar Hydrogen Production Systems
  • PV Hydrogen Production Via Electrolysis
  • Higher-Pressure Operations
  • Improved Electrolyzer
  • Photoelectrochemical Systems (PEC)
  • PEC Types
  • Solar Photobiological Hydrogen Production
  • Solar-Driven Biomass Gasification
  • Solar Thermochemical Cycles
  • Solar Thermal Hydrogen Production Via Electricity Generation and Electrolysis
  • Economics
  • Outlook
  • Existing Artificial Photosynthesis Projects
  • Governance Challenges
  • Leading Research Organizations

HYDROGEN

  • Properties
  • Hydrogen Is Different
  • Conversion Factors
  • Phases
  • Covalent and Organic Compounds
  • Isotopes
  • Natural Occurrence
  • Methods of Production
  • Current Production Methods
  • Steam Reforming
  • Steam Reforming And Co-generation
  • Partial Oxidation
  • Plasma Reforming
  • Coal
  • Electrolysis of Water
  • High-Pressure Electrolysis
  • High-Temperature Electrolysis
  • High-Temperature Electrolysis
  • Photobiological Water Splitting
  • Sulfur-Iodine Cycle
  • Fermentative Hydrogen Production
  • Enzymatic Hydrogen Generation
  • Biocatalysed Electrolysis
  • Renewable Hydrogen
  • Hydrogen Financials Vs. Natural Gas Price
  • Simple And Complex Refineries
  • Applications
  • Petroleum
  • Other Applications: Chemical, Plastics, Energy Carrier, Automotive and Transportation, Coolant, Semiconductors, Instruments, Detectors, Food, Glass, Laboratories and Analysis, Heat Treatment, Nuclear, Space and Aeronautics, Airships
  • Safety and Precautions
  • US Department of Energy's Hydrogen and Fuel Cells Program
  • Hydrogen Production Program
  • Hydrogen Production Cost Status
  • Hydrogen Delivery
  • Hydrogen Storage Program
  • Fuel Cells Program
  • Basic Research
  • American Recovery and Reinvestment Act Projects

HYDROGEN AND THE FUTURE OF CLEAN ENERGY

  • Historical World Energy Production
  • Future World Population
  • Future World Electric Energy Requirements
  • Huge Growth In Energy Demand Forecast
  • Specific Energy In Appropriate Technology
  • Specific Energy of Available Fuels
  • Reduction In The Use Of Petroleum Fuels
  • Inappropriate Technology: Natural Gas To Generate Electricity
  • Inappropriate Technology: Natural Gas To Produce Hydrogen
  • Appropriate Technology: Nuclear Production of Hydrogen
  • Appropriate Technology: Solar Radiation
  • Appropriate Mixture Of Energy Resources
  • Scale Of The Energy Problem
  • Power Requirements Needed
  • Carbon-Free Energy Sources
  • Nuclear
  • Carbon Sequestration
  • Renewables
  • Solar Energy Potential
  • Cost/Efficiency Of Photovoltaic Technology
  • Solar Energy Conversion Strategies
  • Hydrogen Economy: Original Vision
  • Impact Of Battery Technology Developments
  • Impact Of Biofuels Developments
  • Impact Of Electric Storage Technology Advances
  • Modifications To The Original HE Vision
  • HyWays Roadmap
  • Other Studies
  • National Hydrogen Association Report
  • HE Opponents
  • Re-Envisioning HE
  • Key Differences
  • Hierarchy Of Sustainable Hydrogen Centers
  • Hydrogen And Electricity As Energy Vectors
  • Resource Constraints
  • WWS Power
  • No Reliance On Nuclear Power
  • Coal-Fired Power And CCS Not Necessary
  • Hydrogen And Battery Storage In Transport
  • BEVs and HFCVs
  • Hydrogen For Energy Storage On Centralized Grids
  • Energy Security

FUEL CELLS

  • Overview
  • Non-Automotive Fuel Cells
  • Fuel Cell Technologies
  • Major Fuel Cell Technologies
  • Polymer Electrolyte Membrane Fuel Cells
  • Direct Methanol Fuel Cells
  • Alkaline Fuel Cells
  • Phosphoric Acid Fuel Cells
  • Molten Carbonate Fuel Cells
  • Solid Oxide Fuel Cells
  • Regenerative Fuel Cells
  • Comparison Of Fuel Cell Technologies
  • Potential Markets
  • Five Levels Of Suppliers
  • Backup Power
  • Material Handling
  • Combined Heat And Power
  • Micro And Small CHP Applications
  • Research, Development And Demonstration Activity
  • US DOE Advanced Manufacturing Office

MARKET OVERVIEW

  • Hydrogen Market Size
  • Market By Application
  • Refinery Captive Vs. Outsourced Production
  • Oil Refining And Hydrogen Intensity
  • Hydrogen Market Shares
  • Refinery Market Drivers
  • New Markets For Hydrogen
  • Transportation
  • Automobiles
  • Buses
  • Power Generation
  • Competitive Threat of Low Gas Prices
  • Fuel Cell Market
  • Competitive Environment

COMPANY PROFILES

Air Liquide SA

(Background, Large Industries, Industrial Merchant, Electronics, Engineering And Construction, Operations, Pipelines, Blue Hydrogen, Horizon Hydrogène Énergie (H2E) Program, Fuel Cells & Hydrogen Joint Undertaking, Competition, Recent Events, Yanbu' Industrial City Project, Energy Concerns And Environmental Protection, CO2 Directive In Europe, ALH2E, Outlook)

Air Products & Chemicals, Inc.

(Background, Merchant Gases, Tonnage Gases, Electronic And Performance Materials, Equipment And Energy, Hydrogen, Hydrogen Sales, Hydrogen Operating Margins, Hydrogen Market Share, Tonnage Major Projects, Recent Events, Outlook)

Ballard Power Systems Inc.

(Background, Fuel Cells, IdaTech, Telecom, Telecom Backup Power Market, Telecom Opportunities, Customers)

Ceramic Fuel Cells Limited

(Background, Fuel Cells, Technology, Products, BlueGen, Gennex, Value Engineering, Scaling Up, Key Markets, Germany, United Kingdom, The Netherlands and Belgium, Australia, North America, Japan, Marketing, Manufacturing, German Plant, Supply Chain, Real World Operation)

FuelCell Energy, Inc.

(Background, Fuel Cells, Products, Technology, Advantages, Markets, Production)

Hydrogenics Corporation

(Background, Fuel Cells, OnSite Generation, Power Systems, Distribution, Future Markets, New Product Designs)

Linde AG

(Background, Hydrogen, Clean Energy Partnership/ H-Mobility, GCL-Poly Energy, Linde/Daimler Initiative, California AC Transit, Jilin Chemical Park, Linde Engineering)

Praxair, Inc.

(Background, Atmospheric Gases, Process Gases, Industrial Gases Distribution, On-Site, Merchant, Packaged Gases, International, R&D, Hydrogen, Supply Options, Applications, Growth Drivers, Outlook)

Taiyo Nippon Sanso Corporation

(Background, Hydrogen)

UTC Power, LLC/ClearEdge Power

(Background, Fuel Cells, Buildings, Buses, Automobiles, Energy Security)

RESEARCH ORGANIZATION PROFILES

  • Argonne-Northwestern Solar Energy Research Center Energy Materials Center at Cornell
  • Center for Bio-Inspired Solar Fuel Production Arizona State University
  • DOE Joint Center for Artificial Photosynthesis Caltech
  • Dutch Institute for Fundamental Energy Research
  • Energy Frontiers Research Centers EFRC US Department of Energy
  • Energy Materials Lab-SolarCAP
  • EU Commission SOLAR - H
  • Helios Solar Energy Research Center (SERC) Lawrence Berkeley National Lab
  • Korea Center for Artificial Photosynthesis
  • Light Matter Interaction Caltech
  • NSF Center for Chemical Innovation: Solar Fuels Caltech
  • Solar Energy Conversion Cluster
  • SolarChem
  • Solar Fuels & Next Generation Photovoltaics U. North Carolina
  • Swedish Consortium for Artificial Photosynthesis
  • Other Relevant University Based Energy Frontier Research Centers (EFRCs)
  • Additional Programs
  • NSF Programs Supporting University-Industry Research Collaboration
  • Technology Lifecycle - NIST ATP Model
  • World Centers positioned on NIST Model

FIGURES

  • 1.) What Could The Production And Use Of Solar Fuels Look Like
  • 2.) Photosynthesis: Nature's Way Of Making Solar Fuel
  • 3.) Solar Energy Around The Clock
  • 4.) Routes To Solar Fuels
  • 5.) Solar Hydrogen Energy Production And Utilization Methods
  • 6.) Schematic Of A PV Hydrogen Production System
  • 7.) Schematic Of A Generic PEC Photocell
  • 8.) Metal Oxide Solar Hydrogen Production System
  • 9.) Schematic Of A Solar Thermal Hydrogen Production System
  • 10.) Roadmap Of Hydrogen Production Pathways: 2012-2030
  • 11.) Steam Methane Reforming Vs. Gasification of Hydrogen: Production Process Schematic
  • 12.) Direct And Electrolytic Routes To Production of Hydrogen Using Renewable Energy Sources
  • 13.) Global Shift To Complex Refining
  • 14.) US Department Of Energy Projected High-Volume Cost of Hydrogen Production Delivered-Status: 2005-2020
  • 15.) History Of World Energy Production By Source Type (EJ/Year): 1900-2010
  • 16.) Shares Of Various Energy Sources In World Energy Production, Showing Energy Transitions (%): 1900-2010
  • 17.) Projections Of Energy Demand And Supply: 1970-2100
  • 18.) Specific Energy Of Large-Scale Fuels
  • 19.) Power Units: The Terawatt Challenge
  • 20.) Global Energy Consumption By Source: 2001
  • 21.) Global Energy Reserves And Resources By Type
  • 22.) Global Primary Power Use By Source And Year: 1990-2050
  • 23.) Nuclear Requirements To Get 10 TW Of Power
  • 24.) US Saline Reservoirs For CO2 Burial And DOE Sequestration Goals
  • 25.) Global Solar Land Area Requirements For 20 TW Of Power
  • 26.) Cost/Efficiency Of Photovoltaic Technology
  • 27.) Photosynthesis Energy Conversion Strategies
  • 28.) Power Park Fuel System Concept
  • 29.) Fuel Cell Vs Photoelectrolysis Cell
  • 30.) Efficient Solar Water Splitting
  • 31.) Proposed Hierarchy Of Sustainable Hydrogen Centers
  • 32.) Mix Of Renewable Energy Sources To Meet Total Global Energy Demand In 2030
  • 33.) Components Of Battery Electric Vehicle And Fuel Cell Electric Vehicle Systems Charged From An Electricity Grid With RE Input
  • 34.) Schematic Illustration Of A Single Cell
  • 35.) A Fuel Cell System Schematic Diagram
  • 36.) Polymer Electrolyte Membrane Fuel Cell
  • 37.) Alkaline Fuel Cell
  • 38.) Phosphoric Acid Fuel Cell
  • 39.) Molten Carbonate Fuel Cell
  • 40.) Solid Oxide Fuel Cell
  • 41.) Relative Electrical And Thermal Conversion Efficiencies Of Fuel Cell Technologies
  • 42.) US CHP Capacity By Sector: 2010
  • 43.) US CHP Capacity By Technology: 2006
  • 44.) Small CHP (100 kW to 5 MW) Site Count Distribution In The United States: 2010
  • 45.) Small CHP (100 kW to 5 MW) Generating Capacity Distribution in the United States
  • 46.) Commercial Small CHP Capacity Distribution In The United States By Size: 2010
  • 47.) US Clean Energy Patents Index By Technology: 2002-2011
  • 48.) Non-US Countries Fuel Cell R&D Activity: 2007-2016
  • 49.) Major Auto Manufacturers' Activities and Plans For FCEVs
  • 50.) Fuel Cell System Cost Targets: 2002-2017
  • 51.) Electrolyzer Stack Costs: 2002-2011
  • 52.) Stack Cost Progress By Component 2007-2011
  • 53.) DOE Distributed Water Electrolysis Cost Targets: 2006-2020
  • 54.) Projected Hydrogen Production Cost Contribution By Input
  • 55.) US DOE Advanced Manufacturing Office Focus
  • 56.) Air Liquide Industrial Synergies Development Model
  • 57.) Air Products & Chemicals Non-Captive Hydrogen and Refinery Hydrogen Market Share and Tonnage Sales by Product: 2011
  • 58.) Air Products & Chemicals Major Project List: 2013-2014
  • 59.) Telecom Fuel Cells Vs. Gensets And Batteries
  • 60.) Cellular Base Station Additions By Region (%): 2011
  • 61.) Ceramic Fuel Cells' Stack Technology
  • 62.) Ceramic Fuel Cells' Common Platform
  • 63.) Fuel Cells In The Home
  • 64.) BlueGen Used In Europe
  • 65.) BlueGen Used In Australia
  • 66.) BlueGen-Net Screen
  • 67.) Gennex
  • 68.) Ceramic Fuel Cells' Product Modularity And Flexibility
  • 69.) Return On Capital Drives Praxair Shareholder Value
  • 70.) Praxair Gulf Coast Area Hydrogen Pipelines
  • 71.) Praxair Chicago Area Hydrogen Pipelines
  • 72.) Praxair Pipeline Complexes at Caojing, China
  • 73.) Praxair Steam Methane Reformers
  • 74.) Praxair Backlog By Project: 3Q 2012

TABLES

  • 1.) Various Solar Hydrogen Production Systems With Their Types, Processes, Process Description And End Products
  • 2.) Hydrogen Production Costs By Technology
  • 3.) Some Physical Properties of Hydrogen
  • 4.) Energy Densities Of Common Fuels And Hydrogen
  • 5.) Comparison of Hydrogen With Other Fuels
  • 6.) ASU Gases Vs. Hydrogen
  • 7.) Gas Conversion Factors
  • 8.) SMR Mass & Energy Unit Balance
  • 9.) Typical Hydrogen Financials
  • 10.) Simple vs. Complex Refineries
  • 11.) Non-Refining Hydrogen Applications
  • 12.) US Department Of Energy Hydrogen And Fuel Cells Funding: 2007-2011
  • 13.) US ARRA Fuel Cell Grants By Company And Application (US$ Million): 2012
  • 14.) World Energy Intensity: 1900-2000
  • 15.) World Electric Energy Intensity: 1980-2030
  • 16.) World Renewable Energy Resources By Type
  • 17.) Comparison Of Fuel Cell Technologies
  • 18.) Small CHP (100 kW to 5 MW) Capacity And Site Count Distribution By Technology, Fuel Type And Sector: 2010
  • 19.) Selected Small CHP Building Project Basic Economic Factors
  • 20.) Global Hydrogen Market-Captive Vs. Outsourced (USD Billion): 2012-2023
  • 21.) Global Hydrogen Market By Application (USD Billion): 2013
  • 22.) Global Hydrogen Volume Outlook-Captive Vs. Outsourced: 2009-2015
  • 23.) Global Hydrogen Demand, Refining Capacity And Hydrogen Intensity: 2009-2025
  • 24.) Global Outsourced Hydrogen Suppliers' Market Shares (USD Million): 2012
  • 25.) Global Outsourced Hydrogen Market By Supplier And Region: 2010-2015
  • 26.) Global Oil Refining Throughputs (Thousand Barrels Daily): 1980-2011
  • 27.) Fuel Cell Vehicles By Type And Manufacturer: 2012
  • 28.) North American Bus Production By Product Type (Units, USD): 2010
  • 29.) Global Energy Consumption By Primary Fuel And Country (Million Tonnes Of Oil Equivalent): 2011
  • 30.) Global Power Generation Market By Region And Fuel Type (USD Billions): 2000-2020
  • 31.) Natural Gas And Crude Oil Prices By Source (USD/Million BTU): 1984-2011
  • 32.) Global Fuel Cell Market (MW, ASP, US$): 2008-2017
  • 33.) Fuel Cell Manufacturing, Components And Services Companies: 2012
  • 34.) Public Fuel Cell Company Revenues: 2007-2012
  • 35.) Hydrogen Sector Companies And Their Products: 2012
  • 36.) Praxair Sales Growth Plan By Market: 2010-2015
  • 37.) Praxair Sales Breakdown By Product And Region: 2010
  • 38.) Praxair Financial Targets By Segment: 2010-2015
  • 39.) Praxair Enclaves By Country And Capacity
  • 40.) Praxair Significant Hydrogen Projects Recently Completed/In Construction By Size And Date
Back to Top