表紙
市場調査レポート

最先端の自動車用ステアリングシステムの分析

The Advanced Automotive Steering Systems Report

発行 IHS SupplierBusiness 商品コード 299278
出版日 ページ情報 英文 256 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=104.18円で換算しております。
Back to Top
最先端の自動車用ステアリングシステムの分析 The Advanced Automotive Steering Systems Report
出版日: 2014年04月11日 ページ情報: 英文 256 Pages
概要

ステアリング・システムは常に、安全性・車両力学・コストの絶妙なバランスの上に立っています。さらに、近年はエネルギー使用量の削減や燃費向上にも深く関係するようになっています。この10年間でシャーシ全体、特にステアリングは自動車の電化やシステム一体化という革命的な動きに巻き込まれて、劇的に変化してきました。今日、設計者はセンサー技術や電気・機械システムを一体化して、電気式パワーステアリング(EPS)システムを段階的に導入しようとしています。一方、ユーザー側から見ればステアリングは、一方では運転品質(NVHの軽減など)といった形で非常に見えやすい部分であり、他方では直感的には分かりにくく非常に見えづらい(しかし重要な)部分でもあります。この二つの側面の存在と影響力、また「"ステアリング感覚"は自動車の"DNA"であり、また競争優位の源泉だ」という専門家の意見も踏まえて、今後のステアリング開発を進めていく必要性があります。

当レポートでは、全世界の最先端の自動車用ステアリングシステム市場について分析し、ステアリングに関する近年の技術開発の内容や成果(燃費向上、CO2削減など)、自動車の電化の進展状況、技術開発の主な推進要因、今後の技術・市場動向の見通しなどを調査して、その結果を概略以下の構成でお届けします。

イントロダクション

  • 自動車の電化
  • ステアリング・シャーシの性能
    • 設計上の妥協点
    • 製造面での経済性
    • プラットフォーム開発と部品の共通性
    • NVH(騒音・振動・ハーシュネス)

ステアリングシステムの設計

  • ステアリング・ドライブライン用部品
  • 油圧式・ラック&ピニオン型ステアリング
  • 電動油圧パワーステアリング (EHPS)
  • 電気機械式ステアリングシステム
    • エネルギー消費への設計の影響
    • トルク感知方法
    • ソフトウェア対応機能
  • 電気式パワーステアリング(EPS)
    • アクティブ・ステアリングとサスペンション・ステアリング
  • 四輪用・後輪用ステアリング
  • ステアバイワイヤ
  • 自動駐車機能
  • NVHの削減
    • ステアリングの油圧技術に対する圧力の伝播

主な市場促進要因

  • 温室効果ガス排出と省エネルギー
    • EU(欧州連合)
    • 米国
    • 日本
    • 中国
    • 他の国々
  • 素材に関する考察
  • 電化の進展
    • 電気系統の一体化
  • パッケージング上のジレンマ
  • 将来のステアリング設計
  • より高電圧の電気的構造

市場の発展動向

  • 部門別の発展動向

図表一覧

目次

Steering systems have always been a critical balance between safety, vehicle dynamics and cost. Furthermore, today they play an important role in both fuel efficiency, through helping reduce the energy used within the vehicle, and in establishing the character of the vehicle from a driving point of view.

Over the past decade vehicle chassis as a whole, and steering systems in particular, have begun radical changes that are part of the revolution in both electrification and systems integration. Today designers seek to integrate sensor technology, electronic and mechatronic systems in progressively introducing Electric Power Steering (EPS) systems. However, from a customer perspective on the one hand steering is one of the most visible or tangible aspects of vehicle quality in driving when quality is compromised (through NVH issues), while on the other hand, when executed well, a steering system is all but transparent to the driver.

Essentially there are therefore two groups of factors that can be influenced by steering systems: Aspects that influence the customer experience and impact of customer expectations; and Aspects that are not apparent to the customer but that have a strong influence of the vehicle's overall performance.

To a number of commentators and OEMs 'steering feel' has become termed as contributing to the essential 'DNA" of the vehicle, and it is therefore an essential aspect of competitive advantage or position.

About this report

This report begins by examining steering feel and the increasing effect of vehicle electrification and looks at steering and chassis performance. The report goes on to consider the key drivers including fuel efficiency and CO2 emissions, steering design, materials considerations and the packaging dilemma.

Furthermore the report looks at the latest steering system trends, in particular electrically power assisted steering (EPAS), electro-hydraulic power steering (EHPS), electric power steering (EPS), active front steering (AFS), four-wheel steering, steer-by-wire, automated parking and NVH reduction.

Table of Contents

Introduction

  • Vehicle electrification
  • Steering and chassis performance
    • Design compromise
    • Manufacturing economics
    • Platform development and component commonality
    • Noise vibration harshness

Steering system design

  • Steering driveline components
  • Hydraulic rack and pinion steering
  • Electro-Hydraulic Power Steering (EHPS)
  • Electromechanical steering systems
    • Design influence of energy consumption
    • Torque sensing
    • Software enabled features
  • Electric Power Steering (EPS)
    • Active steering and superposition steering
  • Four-wheel and rear wheel steering
  • Steer-by-wire
  • Automated parking
  • NVH reduction
    • Pressure ripples in steering hydraulics

Key drivers

  • Greenhouse gas emissions and fuel efficiency
    • The European Union
    • The United States
    • Japan
    • China
    • Other countries
  • Materials considerations
  • Increasing electrification
    • Electronic systems integration
  • The packaging dilemma
  • The future for steering design
  • Higher voltage electrical architecture

Market developments

  • Sector development

Figures

  • Figure 1: Average power consumption 1985 - 2015 (est.) for mid size and luxury cars
  • Figure 2: Conventional chassis system compromises
  • Figure 3: The complex functional harmony required to provide driving quality
  • Figure 4: Matching and similar parts for the Volkswagen B/C platform
  • Figure 5: Steering column crash safety
  • Figure 6: A schematic of a hydraulic power-assisted rack and pinion steering system
  • Figure 7: Schematics of conventional hydraulic and electro-hydraulic power assisted steering systems
  • Figure 8: Steering system energy consumption
  • Figure 9: Relative energy use EHPS and EPAS
  • Figure 10: Differing steering rack types, force and mechanical performance by vehicle class
  • Figure 11: Column mounted EPAS as used on the Mazda6
  • Figure 12: Dual pinion assist type EPAS
  • Figure 13: Pinion assist type EPAS
  • Figure 14: Paraxial electrically assisted rack
  • Figure 15: Mechanical and electric control systems for EPAS
  • Figure 16: Steering assist by type 2005 and 2011 (cars produced in Europe, North America, Japan and Korea)
  • Figure 17: Active steering system components
  • Figure 18: Speed sensitivity of active steering
  • Figure 19: A schematic of active steering used in a driver assistance function to enhance vehicle stability
  • Figure 20: Diagrams of steering manoeuvres with four wheels steering
  • Figure 21: Renault's active four-wheel steer systems as fitted to the Laguna GT
  • Figure 22: A schematic of Nissan's 4 Wheel Active Steer system
  • Figure 23: A schematic illustrating 4 Wheel Active Steer functionality
  • Figure 24: Nissan's steer-by-wire system
  • Figure 25: Pressure traces from a left turn on gravel surface at 25 km/h
  • Figure 26: Power-assisted rack and pinion steering assembly with standpipe
  • Figure 27: Reduced pressure traces from a left turn on gravel surface at 25 km/h
  • Figure 28: Comparison of CO2 per kilometre targets normalized to NEDC Test Cycle
  • Figure 29: Global CO2 (g/km) performance and standards in new cars 2013-2022
  • Figure 30: Additional costs entailed by tougher European CO2 legislation for a vehicle with emissions of 161g per km
  • Figure 31: The effect of alternative German proposals for CO2 reduction regulation for Europe
  • Figure 32: Changes in materials for lightweight construction
  • Figure 33: Carbon fibre/ alloy hybrid wheel
  • Figure 34: Electronic Stability Control installation rates
  • Figure 35: A schematic of data fusion from multiple sensors
  • Figure 36: X-by-wire roadmap
  • Figure 37: Electrical power requirements for NEDC and actual customer requirements for various vehicle classes
  • Figure 38: Steering system design compromise (EPAS)
  • Figure 39: Additional functionality requires higher voltages - 48 volts

Tables

  • Table 1: Advantages of EPAS
  • Table 2: EPAS systems suitability for vehicle segments
  • Table 3: Illustration of active steering effects on driver input
  • Table 4: Comparison of different fuel efficiency regulations and test regimes
Back to Top