表紙
市場調査レポート

最新式自動車サスペンションシステムの分析

The Advanced Automotive Suspension Systems Report

発行 IHS SupplierBusiness 商品コード 294574
出版日 ページ情報 英文 159 pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=101.50円で換算しております。
Back to Top
最新式自動車サスペンションシステムの分析 The Advanced Automotive Suspension Systems Report
出版日: 2014年01月30日 ページ情報: 英文 159 pages
概要

小型乗用車用サスペンションシステムの市場は、この数年間で急激に変化しています。それまでは、快適さと安全性との妥協点が性能に制約を与えていましたが、技術の発展に伴って快適さとロードホールディングのレベルはこの妥協点の境界を大きく上回るに至ったからです。現在、統合化されたシャーシの一部として、先進的なサスペンションシステムは、その車種を差別化できる重要な領域であり、その車種の基本的な性格付けをする上でOEMが検討する部分でもあります。

当レポートでは、最新式自動車サスペンションシステムを取り上げ、主な市場の発展促進要因を調査分析し、主要なサスペンションシステム、スプリングシステム、ダンパー/ショックアブソーバーなどを含むサスペンション技術の発展動向をまとめるなど、概略以下の構成でお届けいたします。

イントロダクション

主な市場発展促進要因

  • 電化の度合いの進展
    • 複数の電圧構造の効率的な取り扱い
  • 温室効果ガス排出と燃料効率
    • 欧州連合
    • 米国
    • 日本
    • 中国
    • その他諸国
  • 減量と材料
  • 競争とコスト

サスペンション技術の発展

  • パッシブからアクティブサスペンションへの移行
  • サスペンションシステム
    • 剛性車軸サスペンション
    • 半剛性車軸サスペンション
    • 独立懸架式サスペンション
    • ストラット式サスペンション
    • フロントサスペンション市場の発展
    • リアサスペンション市場の発展
  • スプリング(ばね)システム
    • リーフスプリング
    • トーションバースプリング
    • 複合スプリング
    • チタンスプリング
    • ハイドロニューマチックスプリングシステム
    • 空気式スプリング
    • 電子スプリングシステム
    • 電気アクティブボディー制御(eABC)
    • ホイール、ボディー、ロールダンピング(ASCA)
  • ダンパー/ショックアブソーバー
    • 振動ダンパー、またはショックアブソーバー
    • 振幅選択的減衰(Amplitude Selective Damping)
    • ガス荷電ショックアブソーバー
    • 位置感度減衰
    • ダイナミックライド制御
    • BWIマニュアル選択的ライド
    • BWIバイステートリアルタイムダンピングシステム
    • アダプティブダンピング
    • 周波数依存減衰
    • Tenneco持続制御電子サスペンション(CES)とKinetic H2 CESシステム
  • ZFプリローデッドバルブおよびバリオダンパー技術
  • ZF Sachs持続減衰制御
  • スタビライザー、またはアンチロールシステム
  • その他のコンポーネント
  • サスペンション制御システム

図表リスト

目次

The market for light vehicle suspension systems has been changing rapidly over the past few years as technology has enabled levels of comfort and roadholding to improve well beyond the boundaries of the compromise between comfort and safety that once effectively limited performance.

Today, as part of an integrated chassis, advanced suspension systems are a key area through which one vehicle can be differentiated from another and on which OEMs look to build the essential “DNA” of a vehicle.

This report examines the key market drivers in this sector and details materials considerations, increasing electricification, challenges and barriers, chassis and suspension weight reduction and suspension performance. Furthermore the report looks at kinematics & elastokinematics along with the move from active to passive suspension. The report goes on to include detailed sections on suspension element technology and dampers & shock absorbers.

The report also includes an appendix of 28 supplier profiles from suppliers of automotive batteries. These profiles provide you with relevant data on corporate strategy, investments, product offerings and contact information all built from SupplierBusiness research.

SAMPLE

Figure 3: Average power consumption 1990-2010 for mid size and luxury cars

Source: AABC Europe

This report contains an appendix of 28 suspension supplier profiles:

  • Benteler
  • BWI Group
  • KYB
  • Magneti Marelli
  • Mando
  • Metaldyne
  • NHK Spring
  • SANLUIS Passani
  • ThyssenKrupp
  • Tower International
  • TRW Automotive
  • WABCO
  • ZF

Table of Contents

Introduction

Key market drivers

  • Increasing degrees of electrification
    • Efficient handling of multiple voltage architectures
  • Greenhouse gas emissions and fuel efficiency
    • The European Union
    • The United States
    • Japan
    • China
    • Other countries
  • Weight reduction and materials
  • Competition and cost

Suspension technology development

  • Moving from passive to active suspension
  • Suspension systems
    • Rigid axle suspension
    • Semi-rigid axle suspension
    • Independent suspension systems
    • Strut-type suspension systems
    • Front suspension market development
    • Rear suspension market development
  • Spring systems
    • Leaf springs
    • Torsion bar springs
    • Composite springs
    • Titanium springs
    • Hydropneumatic spring systems
    • Pneumatic springs
    • Electronic spring systems
    • Electrical active body control (eABC)
    • Wheel, body, and roll damping (ASCA)
  • Dampers/shock absorbers
    • Vibration dampers or shock absorbers
    • Amplitude Selective Damping
    • Gas charged shock absorbers
    • Position Sensitive Damping
    • Dynamic Ride Control
    • BWI's manual selectable ride
    • BWI's Bi-State real time damping system
    • Adaptive damping
    • Frequency Dependent Damping (FDD)
    • Tenneco's Continuously Controlled Electronic Suspension (CES) and Kinetic H2 CES system
  • ZF preloaded valve and vario damper technology
  • ZF Sachs Continuous Damping Control
    • Magneto-rheological damping
  • Stabilisers or anti-roll systems
  • Other components
    • Knuckles/Uprights
    • Ball joints
    • Bushings
  • Suspension control systems
    • Kinematics and elastokinematics
    • Vertical dynamic control systems
    • Variable dampers
    • Ride comfort
    • The threshold value strategy
    • The skyhook strateg

Figures

  • Figure 1: Conventional suspension compromises (Body acceleration vs. Wheel load variation)
  • Figure 2: The extended performance envelope for fully active suspension compared to conventional passive and semi-active systems
  • Figure 3: Average power consumption 1990-2010 for mid size and luxury cars
  • Figure 4: Electrical power requirements for NEDC and actual customer requirements for various vehicle classes
  • Figure 5: Additional functionality requires higher voltages - 48 volts
  • Figure 6: Conventional suspension compromises
  • Figure 7: The growth of integrated functions
  • Figure 8: BWI's active stabiliser bar system
  • Figure 9: BMW's Dynamic Drive system
  • Figure 10: Additional costs entailed by tougher European CO2 legislation for a vehicle with emissions of 161g per km
  • Figure 11: CO2 (g/km) performance and standards in the EU new cars 1994-2011
  • Figure 12: The effect of alternative German proposals for CO2 reduction regulation for Europe
  • Figure 13: US targets for future GHG reductions (% reduction from 2005 levels)
  • Figure 14: Global mandatory automobile efficiency and GHG standards
  • Figure 15: Global passenger car and light vehicles emission legislation progress 2005-2025
  • Figure 16: Different weight and cost impact of increasingly lightweight material mixes
  • Figure 17: Areas for chassis weight reduction
  • Figure 18: Aluminium potential and market penetration in Europe
  • Figure 19: Ford Focus control blade rear suspension
  • Figure 20: AAM's I-Ride suspension module
  • Figure 21: A schematic of active and semi-active suspension
  • Figure 22: A schematic showing the Mercedes-Benz Pre-Scan technology
  • Figure 23: Mercedes Benz's Pre-Scan technology
  • Figure 24: ZF/ Levant Power's GenShock technology
  • Figure 25: Rigid axle suspension configurations
  • Figure 26: A Ford Mustang driven rigid rear axle
  • Figure 27: Semi-rigid axle suspension configurations
  • Figure 28: Independent wheel suspension kinematic linkages
  • Figure 29: Independent suspension systems with 5, 4, 3, and 3 links
  • Figure 30: Worldwide market share of front axle types in 2005 and 2010
  • Figure 31: Worldwide market share of rear axle types in 2005 and 2010
  • Figure 32: A Mercedes-Benz M-Class front axle
  • Figure 33: Coil over spring configurations
  • Figure 34: Spring supported by a lateral suspension arm
  • Figure 35: Sogefi's composite springs
  • Figure 36: A Nivomat unit
  • Figure 37: Continental's 4-Corner air suspension system
  • Figure 38: Continental's air suspension system
  • Figure 39: CO2 reduction through the use of pneumatic suspension systems
  • Figure 40: Bose's fully electromechanical front suspension model
  • Figure 41: eABC schematic diagram
  • Figure 42: Damping sprung and unsprung mass
  • Figure 43: Acceleration sensitive damping
  • Figure 44: Audi RS5 chassis featuring dynamic ride control
  • Figure 45: Suspension motion sensors
  • Figure 46: A schematic of Tenneco's Continuously Controlled Electronic Suspension
  • Figure 47: A schematic of Tenneco's integrated Kinetic H2 CES system
  • Figure 48: Comparison between standard and pre-loaded valve performance
  • Figure 49: CDC dampers with internal and external valves
  • Figure 50: Graph showing the range in which CDC can continuously vary damping forces in compression and rebound
  • Figure 51: Cross section of a MagneRide actuator
  • Figure 52: The principal behind magneto-rheological fluid dampers
  • Figure 53: Comparison of force-velocity characteristics of a MagneRide damper, typical variable valve dampers and a passive damper
  • Figure 54: ZF Sach's Active Roll Stabilisation system
  • Figure 55: Active stabiliser bar system schematic
  • Figure 56: Axle and multi-axle computer simulation
  • Figure 57: System configuration and sensor positions required for the skyhook strategy.
  • Figure 58: Skyhook strategy for variable dampers

Tables

  • Table 1: Weight reduction in lightweight shock absorber assemblies
  • Table 2: Advantages and disadvantages of electromechanical springs
Back to Top