表紙
市場調査レポート

世界の自動車用トランスミッション産業の分析

The Automotive Transmissions Report

発行 IHS SupplierBusiness 商品コード 262682
出版日 ページ情報 英文 205 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=101.50円で換算しております。
Back to Top
世界の自動車用トランスミッション産業の分析 The Automotive Transmissions Report
出版日: 2014年07月21日 ページ情報: 英文 205 Pages
概要

トランスミッションは近年、単なるコスト抑制・性能向上のための要素ではなく、コスト効率面での利益をもたらすための重要な技術として捉えられています。更に、トランスミッション技術は今後のパワートレイン開発において、運転性能改善・排出抑制のために不可欠な技術となっていきます。また、トランスミッションは運転経験を大きく左右し、ドライバーに運転技術向上や燃費・排出抑制を実感させる効果があります。そのため、自動車メーカー各社はトランスミッション技術の差別化を進めており、トランスミッションの性能は車両の「DNA」の必須要素となっています。

当レポートでは、世界のトランスミッション産業における技術開発の動きについて分析し、開発の促進要因や、各部門(マニュアルトランスミッション(MT)、デュアルクラッチ・セミオートマチック・トランスミッション(DCT)、自動変速装置(AT)、無段変速装置(CVT)、ハイブリッド式トランスミッション、電気自動車用トランスミッションなど)に関する近年の開発傾向、クラッチの開発動向、業界全体の発展の方向性、主要サプライヤー(計11社)のプロファイルなどを調査しております。

イントロダクション

  • 主流トランスミッション技術の変動促進要因
    • トランスミッション開発の促進要因
  • トランスミッションの効率性の向上
  • 温室効果ガス排出規制および燃費規制
    • 欧州連合(EU)
    • 米国
    • 日本
    • 中国
    • 他の国々
  • 検査体制
  • トランスミッション開発に対するエンジン開発の影響力
  • 製品の差別化
  • 投資額と設置済み生産能力

技術開発の主な影響

  • パッケージングと重量
    • 安全規制
  • 性能上の特徴
    • NVH(騒音・振動・ハーシュネス)
  • 速度変化段階の種類
  • トランスミッションのコスト

トランスミッション技術

  • マニュアルトランスミッション(MT)
    • セミオートマチックトランスミッション(AMT)
  • デュアルクラッチ・セミオートマチック・トランスミッション(DCT)
    • DCTのサプライヤー
    • DCTの導入
    • 構成部品の共通性
    • 乾式クラッチか、湿式クラッチか?
    • 電気油圧式作動法か、電気機械式作動法か?

自動車用遊星歯車式トランスミッション

  • 自動車用トランスミッションのギアセットの構成
  • トルクコンバーター
  • 六速式オートマチックトランスミッション
  • 七速式オートマチックトランスミッション
  • 八速式オートマチックトランスミッション
  • 九速式オートマチックトランスミッション
  • 世界のAT生産構造の予測:速度段階別
  • ATにおける手動優先システム

無段変速装置(CVT)

  • 市場の考察
    • 次世代対応のCVT技術

その他のトランスミッション技術

  • 無段変速トランスミッション(IVT)またはトロイダル・トランスミッション

トランスミッションと電化

  • CVT用ハイブリッド・トランスミッション
  • 自動車用遊星歯車式ハイブリッド・トランスミッション
  • AMT用ハイブリッド・トランスミッション
  • DCT用ハイブリッド・トランスミッション
    • 電気自動車(EV)用トランスミッション

クラッチの開発

  • クラッチ用摩擦材
  • クラッチ・バイ・ワイヤ

市場の発展

  • 全世界のトランスミッション製造状況
    • デザインソース

図表一覧

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

The transmissions sector is no longer primarily driven by cost control and installed capacity, but is emerging as a critical technology that can deliver much needed benefits in a cost-effective fashion compared to other areas of technology. Furthermore, transmission technology is also critical to future powertrain development in terms of its ability to deliver both drivability and emissions-reducing performance.

The transmission essentially controls the driving experience that the customer enjoys and makes a significant contribution to the fuel consumption performance of the vehicle. Therefore, as OEMs strive to differentiate their product offering transmission choice and performance have become an essential element of the 'DNA' of the vehicle.

About this report

This popular report begins by examining transmission development drivers along with transmission development changes. The report goes on to examine transmissions technology, with particular attention to Manual Transmissions (MT), Dual Clutch Automated Manual Transmissions (DCT), Automatic Transmissions, Continuously Variable Transmissions (CVT), Hybrid Transmissions and Electric Vehicle Transmissions.

The Automotive Transmissions sector is now a critical technology that can deliver much needed benefits to a vehicle in a relatively cost-effective fashion.

Transmission technology is critical to future powertrain development in terms of its ability to deliver both drivability and the emissions-reducing performance being demanded. As OEMs strive to differentiate their product offerings transmission choice and performance have become an essential element of the 'DNA' of the vehicle.

About the Report

The new edition Automotive Transmissions Supplier Report looks at:

  • Transmission Development Drivers
  • Changes in Transmission Characteristics and Features
  • Transmissions Technologies (Manual Transmissions (MT), Dual Clutch Automated Manual Transmissions (DCT), Automatic Transmissions, Continuously Variable Transmissions (CVT), Hybrid Transmissions and Electric Vehicle Transmissions
  • In-depth profiles of 11 leading transmission suppliers

Table of Contents

Introduction

  • Forces driving mainstream transmission changes
    • Transmission development drivers
  • Transmission efficiency gains
  • Greenhouse gas emissions and fuel efficiency
    • The European Union
    • The United States
    • Japan
    • China
    • Other countries
  • Testing regimes
  • The influence of engine development on transmission development
  • Product differentiation
  • Investment and installed capacity

Key influences on technology development

  • Packaging and weight
    • Safety regulations
  • Performance characteristics
    • Noise Vibration Harshness (NVH)
  • Ratio spread
  • Transmission costs

Transmissions technology

  • Manual Transmissions (MTs)
    • Automated manual transmissions (AMTs)
  • Dual clutch automated manual transmissions (DCT)
    • DCT Suppliers
    • DCT introduction
    • Commonality of componentry
    • Dry clutch or wet clutch?
    • Electro-hydraulic or electro-mechanical actuation?

Planetary automatic transmissions

  • Automatic transmissions gear set configurations
  • Torque converters
  • Six-speed automatic transmissions
  • Seven-speed automatic transmissions
  • Eight-speed transmissions
  • Nine-speed and ten-speed transmissions
  • Global AT production mix forecast by number of ratios
  • Manual override systems on ATs

Continuously variable transmissions (CVT)

  • Market considerations
    • Next generation optimised CVT technology

Other transmission technologies

  • Infinitely variable transmissions (IVT) or toroidal transmissions

Transmissions and electrification

  • CVT hybrid transmissions
  • Planetary automatic hybrid transmissions
  • AMT hybrid transmissions
  • DCT hybrid transmissions
    • EV transmissions

Clutch development

  • Clutch friction materials
  • Clutch-by-wire

Market development

  • Global transmissions manufacturing
    • Design source

Figures

  • Figure 1: Sensor proliferation and driveline complexity
  • Figure 2: Changing industry drivers from an OEM perspective
  • Figure 3: Changes in transmission attributes CVT, DCT, AT
  • Figure 4: Market growth in AT types
  • Figure 5: Relative fuel consumption and loss sources
  • Figure 6: Global CO2 (g/km) progress normalised to NEDC test cycle
  • Figure 7: The effect of alternative German proposals for CO2 reduction regulation for Europe
  • Figure 8: CO2 (g/km) performance and standards in the EU new cars 1994-2011
  • Figure 9: Additional costs entailed by tougher European CO2 legislation for a vehicle with emissions of 161g per km
  • Figure 10: Comparison of different test regimes for EU, US and Japan
  • Figure 11: Launch response comparison of AT and DCT with turbocharging
  • Figure 12: Engine design trends 2011-2020
  • Figure 13: Changes in average engine displacement and power density 2011-2020
  • Figure 14: Regional and global vehicle segment trends 2011-2020
  • Figure 15: Regional and global vehicle cylinder count trends 2011-2020
  • Figure 16: Engine and AMT package in Volkswagen's compact up! model
  • Figure 17: Influence of engine trends on transmission driveline NHV
  • Figure 18: Consumer add-on transmissions prices
  • Figure 19: Willingness to pay extra for AMTs, CVTs and DCTs
  • Figure 20: Global MT production by number of forward speeds, 2012-2017
  • Figure 21: European transmission installations
  • Figure 22: North American transmission installation market
  • Figure 23: Chinese transmission installations
  • Figure 24: Japan/ Korea transmission installations
  • Figure 25: Global MT production proportions 2012-2017
  • Figure 26: Oerlikon Graziano's innovative 7-speed AMT
  • Figure 27: Global AMT production, 2012-2017
  • Figure 28: A 3 dimensional model of FEV's 7-xDCT gearset
  • Figure 29: FEV's 10-xDCT overview
  • Figure 30: The FTP C635 transmissions family in MT and DCT form
  • Figure 31: Fiat Powertrain Technologies transmissions portfolio 2014
  • Figure 32: Getrag's FWD DCT product roadmap
  • Figure 33: Getrag's product development strategy
  • Figure 34: Getrag's 6DCT250 DCT with dry clutch
  • Figure 35: Getrag's FWD DCT family based on 7DCT300
  • Figure 36: LuK dry and wet double clutch assemblies for DCTs
  • Figure 37: ZF's 7DT multi-plate wet clutch DCT
  • Figure 38: ZF's Traxon modular heavy duty transmission
  • Figure 39: Global DCT production, 2012-2017
  • Figure 40: DCT hardware comparison conventional vs one-way clutch design
  • Figure 41: BorgWarner FWD Power Split transmission architecture
  • Figure 42: Electromechanical gear actuation Getrag's 7DCT300
  • Figure 43: AT and DCT ratio production trend, 2012-2020
  • Figure 44: Relative CO2 output improvements for AT together with powertrain electrification
  • Figure 45: Hydrodynamically cooled clutch
  • Figure 46: Bosch Mechatronic Control Module
  • Figure 47: GM's 6T70 6-speed AT developed in collaboration with Ford
  • Figure 48: Average percentage fuel economy improvement for 7G-Tronic Plus (NEDC)
  • Figure 49: Mercedes-Benz 7G-Tronic Plus automatic transmission
  • Figure 50: ZF's 8HP AT
  • Figure 51: A schematic of ZF's hydraulic impulse storage system
  • Figure 52: ZF 9HP
  • Figure 53: GM Ford collaboration 9-speed AT
  • Figure 54: Mercedes-Benz 9G-Tronic AT
  • Figure 55: 7G-Tronic gear set
  • Figure 56: Ratio proportions 2012-2017
  • Figure 57: Tiptronic shifter on a 2003 Porsche 911
  • Figure 58: Audi-LuK MultiTronic link-plate chain
  • Figure 59: Jatco's next-generation CVT, the first to apply an auxiliary gearbox
  • Figure 60: A Fixed Pitch Continuously Variable Transmission (FPCVT) assembly with two FPCVT units connected in series
  • Figure 61: Honda's CR-Z CVT
  • Figure 62: CVT production, 2012-2017
  • Figure 63: Jatco's CVT7
  • Figure 64: CVT production by region 2012-2017
  • Figure 65: Key technologies in improving CVT performance
  • Figure 66: Partial (left) and full (right) toroidal spaces within an IVT
  • Figure 67: Torotrak IVT variator
  • Figure 68: Torotrak's Flybrid flywheel and IVT system
  • Figure 69: Progressive drivetrain electrification
  • Figure 70: Additional functionality requires higher voltages - 48 volts
  • Figure 71: Toyota's Synergy hybrid Drive (SHD)
  • Figure 72: ZF's 8HP hybrid transmission
  • Figure 73: IAV's 7H-DCT280 hybrid transmission
  • Figure 74: Representation of a full sequence of a shift event using Oerlikon Graziano's eDCT
  • Figure 75: BorgWarner's 31-03 eGearDrive single speed transmission
  • Figure 76: Getrag's 2eDCT600 EV transmission
  • Figure 77: Wrightspeed GTD
  • Figure 78: Xtrac transmission for the Rolls-Royce 102EX
  • Figure 79: Comparison of baseline and forced dry-clutch cooling on traffic jam driving
  • Figure 80: Controlled cooling simulation during full-throttle launch
  • Figure 81: ZF's hydrodynamically cooled clutch
  • Figure 82: LuK's dry double clutch unit
  • Figure 83: Global transmissions production by region, 2012-2017
  • Figure 84: Global transmissions design source by region, 2014
  • Figure 85: Global transmissions design source by region, 2021

Tables

  • Table 1: Relating sector drivers to technical requirements
  • Table 2: Range of fuel consumption reduction potential, 2015-2020, for powertrain technologies
  • Table 3: Comparison of fuel economy regulations
  • Table 4: Transmission value contribution by technology
  • Table 5: Dry versus wet DCT performance
  • Table 6: Getrag's FWD DCT family showing hybridisation options
  • Table 7: Top 20 transmissions manufacturers 2012 and 2020
Back to Top