表紙
市場調査レポート

最新式シャーシシステムの分析

The Advanced Chassis Systems Report

発行 IHS SupplierBusiness 商品コード 216621
出版日 ページ情報 英文 217 Pages
納期: 即日から翌営業日
価格
本日の銀行送金レート: 1USD=102.95円で換算しております。
Back to Top
最新式シャーシシステムの分析 The Advanced Chassis Systems Report
出版日: 2013年10月09日 ページ情報: 英文 217 Pages
概要

当レポートでは、世界の主要シャーシメーカーにおける技術開発動向について分析し、全体的な開発促進要因や、各パーツ(サスペンション、ステアリングなど)別の最新技術の性能の詳細情報や、主要企業のプロファイルなどを盛り込んで、概略以下の構成でお届けします。

イントロダクション

  • シャーシ内部の電化
  • シャーシの性能
    • 設計上の妥協
  • 製造工程の経済性
  • プラットフォーム開発と部品の共通性
  • NVH(騒音・振動・ハーシュネス)

主な開発促進要因

  • 温室効果ガス排出と燃費
    • 欧州連合(EU)
    • 米国
    • 日本
    • 中国
    • 他の国々
  • シャーシ用素材の開発
  • 電化の進展
    • 電気系統の一体化
  • パッケージのジレンマ
  • 将来のシャーシ設計

サスペンションのシステム

  • 課題と障害

サスペンション技術の発展:パッシブからアクティブへ

  • キネマティクス(運動学)と弾性運動学
  • サスペンション要素の技術
    • 制御アーム
    • スプリングシステム
  • アクティブボディコントロール
    • 横揺れ防止/スタビライザー装置
  • アダプティブ・ダンピング・システム
  • エアサスペンション
    • 空気圧式/油空圧式システム
    • 「スカイフック」制御戦略
  • アクティブサスペンション・システム
    • 電子式ダンパーコントロール(EDC)
    • アクティブ・サスペンション・ジオメトリー (ASG)
  • セミアクティブサスペンション
    • BWIのMagneRide:MRダンピング
  • アクティブ電動式サスペンションシステム
    • 回復式ダンピングシステム
  • 今後の傾向

シャーシとコーナーモジュール

ステアリングのシステム

  • 電子式パワーステアリング(EPAS)
    • 表面弾性波
    • ソフトウェアによる機能
  • 電動油圧式パワーステアリング(EHPS)
  • 電気式パワーステアリング(EPS)
    • アクティブ・フロント・ステアリング(AFS)
  • 四輪ステアリング
  • ステア・バイ・ワイヤー
  • 自動パーキング

ブレーキシステムの開発

  • アンチロック装置(ABS)
    • 電気制御ブレーキシステム(EBS)/電子制御配分システム(EBD)
    • ブレーキアシスト(BA)
    • 緊急時自動ブレーキ装置
    • セラミック合成物ディスク
    • 軽量ブレーキディスク
  • ブレーキ・バイ・ワイヤ
    • 電動油圧式ブレーキ・バイ・ワイヤ
    • 電気機械式ブレーキ・バイ・ワイヤ
  • 回生ブレーキシステムとブレーキの混合
  • 車両安定性システム

4DW(四輪駆動)

  • 排出量と燃費
  • アクティブ・トルク・ダイナミクス (ATD)
    • 安全性とAWD(前輪駆動)
    • 技術と課題
  • 電気式AWD
    • 制御システムの一体化
  • アクティブAWD
  • トルク・ベクタリング
  • 今後の傾向

サプライヤーのプロファイル

  • Autoliv
  • Benteler
  • Bharat Forge
  • Bosch
  • Brabant Alucast
  • BWI Group
  • Casti SpA
  • Continental
  • ixetic
  • ジェイテクト
  • KYB
  • Magna
  • Magneti Marelli
  • Mando Corporation
  • Mubea
  • 日本精工(NSK)
  • Schaeffler
  • Sogefi
  • tedrive
  • Tenneco
  • ThyssenKrupp
  • Tower International
  • Trelleborg
  • TRW Automotive
  • VB-Airsuspension
  • Wabco
  • ZF

図表一覧

このページに掲載されている内容は最新版と異なる場合があります。詳細はお問い合わせください。

目次

Chassis technology today is one of the key functional areas responsible for overall performance in terms of vehicle dynamics, safety and fuel efficiency, and these functions can be seen as the key contributor to competitive advantage.

At its simplest the chassis can been defined as the frame of the vehicle plus its ‘running gear' consisting of steering, suspension, wheels and brakes. However, today this description misses an essential point in that the chassis now is a complex set of components that are responsible for the vast majority of the ride, handling, comfort and safety. Furthermore, through the use of advanced materials and systems it has a significant role to play in reducing CO2 output.

Table of Contents

Introduction

  • Electrification within the chassis
  • Chassis performance
  • Design compromise
  • Manufacturing economics
  • Platform development and component commonality
  • Noise vibration harshness

Key Development Drivers

  • Greenhouse gas emissions and fuel efficiency
  • The European Union
  • The United States
  • Japan
  • China
  • Other countries
  • Chassis materials developments
  • Increasing electrification
  • Electronic systems integration
  • The packaging dilemma
  • The future for chassis design
  • Suspension systems
    • Challenges and barriers
  • Suspension technology development passive moving to active
    • Kinematics and elastokinematics
  • Suspension element technology
    • Control arms
    • Spring systems
    • Active body control
    • Anti-roll or stabiliser systems
    • Adaptive damping system
    • Air suspension
    • Pneumatic and hydropneumatic systems
    • The ‘skyhook control strategy
    • Active suspension systems
    • Electronic Damper Control (EDC)
    • Active Suspension Geometry (ASG)
    • Semi-active suspension
    • BWI MagneRide: Magneto-rheological damping
    • Active electronic suspension system
    • Recuperative damping systems
    • Future trends
  • Chassis and Corner Modules
  • Steering Systems
    • Electrically Power Assisted Steering (EPAS)
    • Surface acoustic wave
    • Software enabled features
    • Electro-Hydraulic Power Steering (EHPS)
    • Electric Power Steering (EPS)
    • Active Front Steering (AFS)
    • Four-wheel steering
    • Steer-by-wire
    • Automated parking
  • Braking System Development
    • Anti-Lock Braking System (ABS)
    • Electronic Braking System (EBS) or Electronic Brake Distribution (EBD)
    • Brake Assist (BA)
    • Autonomous emergency braking
    • Ceramic composite brakes
    • Lightweight brake discs
    • Brake-by-wire
    • Electro-hydraulic brake-by-wire
    • Electro-mechanical brake-by-wire
    • Regenerative braking systems and brake blending
    • Vehicle stability systems
  • Four-wheel Drive (4WD)
    • Emissions and Fuel Economy
    • Active Torque Dynamics (ATD)
    • Safety and AWD
    • Technologies and Challenges
    • Electric AWD
    • Integration of Control Systems
    • Active All Wheel Drive (AWD)
    • Torque vectoring
    • Future trends
  • Supplier Profiles
    • Autoliv
    • Benteler
    • Bharat Forge
    • Bosch
    • Brabant Alucast
    • BWI Group
    • Casti SpA
    • Continental
    • ixetic
    • JTEKT
    • KYB
    • Magna
    • Magneti Marelli
    • Mando Corporation
    • Mubea
    • NSK
    • Schaeffler
    • Sogefi
    • tedrive
    • Tenneco
    • ThyssenKrupp
    • Tower International
    • Trelleborg
    • TRW Automotive
    • VB-Airsuspension
    • WABCO
    • ZF

Figures

  • Figure 1: Additional functionality requires higher voltages - 48 volts
  • Figure 2: Conventional suspension compromises
  • Figure 3: Matching and similar parts for the Volkswagen B/C platform
  • Figure 4: Common and matching parts (Chassis, drivetrain, steering system) for the Volkswagen B/C platform
  • Figure 5: Progress from platform through modular to assembly kit strategy for Volkswagen Golf
  • Figure 6: Volkswagen MQB platform
  • Figure 7: Additional functionality requires higher voltages - 48 volts
  • Figure 8: The complex functional harmony required to provide driving quality
  • Figure 9: Global CO2(g/km) progress normalised to NEDC test cycle
  • Figure 10: CO2 (g/km) performance and standards in the EU new cars 1994 -2011
  • Figure 11: Additional functionality requires higher voltages - 48 volts
  • Figure 12: Weight share of modules and their weight increase
  • Figure 13: Aluminium steering knuckle
  • Figure 14: A lightweight strut with a fibreglass wheel carrier
  • Figure 15: Average profit per vehicle versus CO2 compliance costs
  • Figure 16: Global market revenue forecast for OEM electronic systems (billions)
  • Figure 17: Electronic Stability Control installation rates
  • Figure 18: High performance domain control ECUs can simplify overall network complexity
  • Figure 19: A schematic of data fusion from multiple sensors
  • Figure 20: X-by-wire roadmap
  • Figure 21: Average power consumption 1990 - 2010 for mid size and luxury cars
  • Figure 22: Electrical power requirements for NEDC and actual customer requirements for various vehicle classes
  • Figure 23: The extended performance envelope for fully active suspension compared to conventional passive and semi-active systems
  • Figure 24: Ford Focus control blade suspension
  • Figure 25: Additional functionality requires higher voltages - 48 volts
  • Figure 26: Typical control arm designs
  • Figure 27: Suspension control arm configurations
  • Figure 28: BWI's Active Stabiliser Bar System
  • Figure 29: Dynamic Ride Control main module schematic
  • Figure 30: A schematic of Monroe's kinetic system
  • Figure 31: Continental's 4-Corner air suspension system
  • Figure 32: Continental's air suspension system
  • Figure 33: CO2 reduction using pneumatic suspension systems
  • Figure 34: Graph showing the range in which CDC can continuously vary damping forces in compression and rebound
  • Figure 35: CDC dampers with internal and external valves
  • Figure 36: Cross section of a MagneRide actuator
  • Figure 37: Comparison of force-velocity characteristics of a MagneRide damper, typical variable valve dampers and a passive damper
  • Figure 38: Bose's fully electromechanical front and rear suspension modules
  • Figure 39: A schematic representation of Genshock technology
  • Figure 40: Steering system design compromise (EPAS)
  • Figure 41: BWI's corner module
  • Figure 42: MOBIS' front chassis module
  • Figure 43: Additional functionality requires higher voltages - 48 volts
  • Figure 44: Mechanical and electric control systems for EPAS
  • Figure 45: Differing steering rack types, force and mechanical performance by vehicle class
  • Figure 46: A schematic of AFS used in a driver assistance function to enhance vehicle stability
  • Figure 47: Renault's active four-wheel steer systems as fitted to the Laguna GT
  • Figure 48: Nissan's steer-by-wire system
  • Figure 49: A schematic illustrating 4 Wheel Active Steer functionality
  • Figure 50: Ford's park assist system
  • Figure 51: Brake control systems roadmap
  • Figure 52: Continental's electronic wedge brake on test
  • Figure 53: Continental's electro-hydraulic combi braking system layout
  • Figure 54: By-wire brake system layout with regeneration
  • Figure 55: Mazda's supercapacitor based regenerative braking system layout
  • Figure 56: Continental's regenerative braking system layout
  • Figure 57: Comfortable regeneration requires uncoupling the pedal and quiet and highly dynamic of braking force regulation
  • Figure 58: Bosch's yaw torque compensation system.
  • Figure 59: Attributes of lifestyle and AWD wagons and performance AWD vehicles
  • Figure 60: Attributes of SUVs and crossover vehicles

Tables

  • Table 1: Comparison between various automotive suspension systems
  • Table 2: Front axle design proportions, worldwide light passenger vehicles (%)
  • Table 3: Front axle design by segment, worldwide light passenger vehicles (%)
  • Table 4: Rear axle design proportions, worldwide light passenger vehicles (%)
  • Table 5: Rear axle design by segment, worldwide light passenger vehicles (%)
  • Table 6: Advantages of EPAS
Back to Top