市場調査レポート - 58394

レーザー・プロジェクション・システム:2007年

2007 Laser Projection Systems

発行 Insight Media
出版日 ページ情報 英文 221 pages
価格
こちらの商品の販売は終了いたしました。
レーザー・プロジェクション・システム:2007年 2007 Laser Projection Systems
出版日: 2007年11月01日 ページ情報: 英文 221 pages

当商品の販売は、2014年07月02日を持ちまして終了しました。

概要

マイクロディスプレイ・ベースの投影システムの光源として、ランプに代わりレーザーを使用することが1966年以来期待されてきましたが、同システムはコストと性能の面で決して満足できるものではなく、今日レーザー光源を使用しているプロジェクターは極端に高級向けの高額な製品に限られております。

当報告書では、性能、コスト、可用性の分析、及び2007-2012年間の将来予測など、投射型ディスプレイに使用されるレーザー技術の評価に必要な情報を提供し、概略下記の構成でお届けいたします。

第1 エグゼクティブサマリー

  • イントロダクション
  • 投射型ディスプレイにおける照明光源としてのレーザーの利用
    • 投射型ディスプレイにおけるレーザー普及率拡大のために必要な発展
    • 投射アプリケーションにおけるレーザーの他の照明光源に勝る長所
    • レーザーの価格
    • 価格/性能の障害の克服
    • 現在レーザーが最も利用されている投射型ディスプレイのアプリケーション
  • 投射アプリケーションにおけるレーザーとLEDの状態
    • ピコ・プロジェクター
    • ヘッドアップ・ディスプレイ
    • ポケット・プロジェクター
    • ウルトラ・ポータブル・プロジェクター
    • 消費者向けリア・プロジェクション
    • 消費者向けフロント・プロジェクション(ホームシアター)
    • ビジネス用プロジェクター
    • 可視化とシミュレーション
    • 大規模投射環境(電子映画を含む)
  • 企業プロファイル

第2章 固体RGBレーザー技術とディスプレイへの応用

  • 本調査の概要
  • ディスプレイにおけるレーザーの利用
    • ディスプレイのカラー
    • 投射型ディスプレイ用レーザー波長の選択
    • 3色以上のレーザーを使用したレーザー色域
    • Infitec技術を使用したレーザー3Dディスプレイ
    • 色のメタメリズム
    • レーザー・スペックル
    • ウォームアップ・タイム
    • 寿命
    • レーザー安全性
    • 環境問題
    • レーザー特性の種類
    • レーザーの信頼性
  • レーザー技術
    • レーザー材料
    • 非線形波長変換
    • 固体レーザーの設計
    • 特殊レーザー色に使用される技術
    • レーザーのパッケージング技術
  • レーザー・ディスプレイ・システム技術
    • 2軸走査システム
    • 1軸走査システム
    • マイクロディスプレイ・ベースのシステム
    • 多様な参入企業に使用されるディスプレイ方式

第3章 レーザー・ディスプレイの将来予測

  • 技術予測
    • レーザー技術の予測
    • レーザー・プロジェクション・システム技術の予測
  • レーザーの価格予測
    • 価格 vs. 立体モデル
    • 2007年のレーザー価格
    • 2006-07年間の価格下落の観察/予測
    • 2012年までの価格下落の予測
    • 値下げの概要
    • 価格/性能/容積の障害克服
    • 画期的な価格予測

第4章 市場部門の将来予測

第5章 結論

  • ディスプレイへのレーザーの適用

第6章 SWOT分析:レーザー vs. 競合技術

  • 投射アプリケーションにおけるレーザー vs. LED
    • 長所
    • 短所
    • 機会
    • 脅威
  • 投射アプリケーションにおけるレーザー vs. ランプ
    • 長所
    • 短所
    • 機会
    • 脅威
  • 投射アプリケーションにおけるランプ vs.レーザーとLED
    • 長所
    • 短所
    • 機会
    • 脅威

第7章 付録1:レーザー、部品、システムの製造業者

第8章 付録2:主要レーザー製造業者のプロファイル

第9章 付録3:主要レーザー・システム企業のプロファイル

目次

Abstract

A study of the use of lasers as an illumination source for projection systems

Quick Facts

  • Date of Release: November 2007
  • Publisher: Insight Media
  • Authors: Matthew Brennesholtz
  • Number of Pages: 221

The Need:

Virtually all microdisplay-based projection systems built to date have used an HID lamp such as the UHP as a light source. While lasers have been proposed as replacements for the lamp as far back as 1966, cost and performance of these systems has rarely been satisfactory. Today only extreme high-end, high-price projectors use laser illumination. There is a need for an evaluation of lasers in terms of technology, price and performance, and comparison of these parameters to the existing and forecast markets for projection systems across a range of potential applications.

Report Objective:

The objective of this report is to supply technologists, managers, product planners, engineers and researchers with the information needed to evaluate laser technology in proposed projection displays. The required information needed to make these decisions include performance data, cost information and availability, forecasted from 2007-2012. Since the projection market includes segments that range from very low end to very high end, this report evaluates lasers from a few milliwatts to 5 watts and more of optical output per color. Separate Market Segment Analyses of nine different market segments focus on applying the cost and performance data of laser systems developed in the main report.

Highlights:

  • Coverage of the use of lasers in displays, including both benefits and problems
  • Optimized wavelengths and colorimetry of lasers to be used for projection displays
  • A description of current solid-state laser technology for visible-light lasers from 1mW to 5W output and beyond (Expanded to include technologies not discussed in the 2006 Insight Media Laser Report)
  • A discussion, including examples, of the opto-mechanical design of solid state lasers
  • Evaluation of projection systems that can use laser illumination, including flying spot scanners, 1-D arrays, such as the GLV or GEMS, and conventional microdisplays when used with laser illumination
  • A technology forecast for solid-state lasers including changes in the technology that can be expected through 2012
  • A forecast of the technology to be used in laser-based projection systems through 2012
  • Price forecasts for lasers, as a function of output power, color and quantity per year. All price forecasts go through 2012. These prices are forecast based on the prices of existing lasers (Including a comparison to the prices forecast in the 2006 Insight Media Laser Report)
  • "Breakthrough" laser price forecasts through 2012. These prices are for low-cost lasers specifically designed for projection display applications(New in the 2007 Report)
  • A discussion of how these breakthrough price forecasts may be achieved by laser manufacturers (Expanded and updated)
  • A table containing information on 85 companies involved in lasers or laser projection
  • Profiles of 12 laser manufacturers (Compared to 6 in 2006 Report)
  • Profiles of 11 additional companies involved in laser projection (Compared to 10 in 2006 report)

Table of Contents

1 Executive Summary

  • 1.1. Introduction
  • 1.2. Use of Lasers as the Illumination Source in Projection Displays
    • 1.2.1. Required Developments to Increase Lasers Penetration in Projection Displays
    • 1.2.2. Advantages of Lasers Over Other Illumination Sources in Projection Applications
    • 1.2.3. Laser Price Study
    • 1.2.4. Breaking the Price/Performance Barrier
    • 1.2.5. Projection Display Applications Currently Best Served by Lasers
  • 1.3. Status of Lasers and LEDs in Projection Applications
    • 1.3.1. Pico-Projectors
    • 1.3.2. Head-Up Displays
    • 1.3.3. Pocket Projectors
    • 1.3.4. Ultra-Portable Projectors
    • 1.3.5. Consumer Rear Projection
    • 1.3.6. Consumer Front Projection (Home Theater)
    • 1.3.7. Business Projectors
    • 1.3.8. Visualization and Simulation
    • 1.3.9. Large Venue, Including Electronic Cinema
  • 1.4. Corporate Profiles

2 Solid-state RGB Laser Technology and its Application to Displays

  • 2.1. Introduction to This Study
  • 2.2. Use of Lasers in Displays
    • 2.2.1. Color in Displays
    • 2.2.2. Laser Wavelength Selection for Projection Displays
    • 2.2.3. Laser Color Gamuts with More than Three Lasers
    • 2.2.4. Laser-Based 3D Displays with Infitec Technology
    • 2.2.5. Color Metamerism
    • 2.2.6. Laser Speckle
    • 2.2.7. Warm-Up Time
    • 2.2.8. Lifetime
    • 2.2.9. Laser Safety
    • 2.2.10. Environmental Issues
    • 2.2.11. Variation in Laser Properties
    • 2.2.12. Laser Reliability
  • 2.3. Laser Technology
    • 2.3.1. Laser Materials
    • 2.3.2. Non-Linear Wavelength Conversion
    • 2.3.3. Designs for Solid-State Lasers
    • 2.3.4. Technologies Used for Specific Laser Colors
    • 2.3.5. Laser Packaging Technology
  • 2.4. Laser Display System Technology
    • 2.4.1. Two-axis scanning Systems
    • 2.4.2. Single-Axis Scanning Systems
    • 2.4.3. Microdisplay-based Systems
    • 2.4.4. Display Approaches Used by Various Participants

3 Forecasts for Laser-Based Displays

  • 3.1. Technology Forecast
    • 3.1.1. Laser Technology Forecast
    • 3.1.2. Laser Projection System Technology Forecast
  • 3.2. Laser Price Forecast
    • 3.2.1. Price vs. Volume Model
    • 3.2.2. 2007 Laser Prices
    • 3.2.3. Observed vs. Forecast Price Decline 2006 to 2007
    • 3.2.4. Forecast Laser Price Decline Through 2012
    • 3.2.5. Price Reduction Summary
    • 3.2.6. Breaking the Price/Performance/Volume Barrier
    • 3.2.7. Breakthrough Price forecast

4 Market Segment Forecasts

5 Conclusions

  • 5.1. Application of Lasers to Displays

6 SWOT Analysis: Lasers vs. Competitive Technology

  • 6.1. SWOT Analysis of Lasers vs. LEDs in Projection Applications
    • 6.1.1. Strengths
    • 6.1.2. Weaknesses
    • 6.1.3. Opportunities
    • 6.1.4. Threats
  • 6.2. SWOT Analysis of Lasers vs. Lamps in Projection Applications
    • 6.2.1. Strengths
    • 6.2.2. Weaknesses
    • 6.2.3. Opportunities
    • 6.2.4. Threats
  • 6.3. SWOT Analysis of Lamps vs. Lasers and LEDs in Projection Applications
    • 6.3.1. Strengths
    • 6.3.2. Weaknesses
    • 6.3.3. Opportunities
    • 6.3.4. Threats

7 Appendix 1: Laser, Component and System Manufacturers

8 Appendix 2: Profiles for Selected Laser Manufacturers

  • 8.1. Arasor
    • 8.1.1. Company Background
    • 8.1.2. Technology and Products
    • 8.1.3. SWOT Analysis
  • 8.2. Coherent
    • 8.2.1. Company Background
    • 8.2.2. Technology & Products
    • 8.2.3. SWOT Analysis
  • 8.3. Collinear
    • 8.3.1. Company Background
    • 8.3.2. Technology& Products
    • 8.3.3. SWOT Analysis for Collinear
  • 8.4. Corning
    • 8.4.1. Company Background
    • 8.4.2. Technology and Products
    • 8.4.3. SWOT Analysis
  • 8.5. Epson
    • 8.5.1. Company Background
    • 8.5.2. Technology and Products
    • 8.5.3. SWOT Analysis
  • 8.6. Nichia
    • 8.6.1. Company Background
    • 8.6.2. Technology and Products
    • 8.6.3. SWOT Analysis
  • 8.7. nLight
    • 8.7.1. Company Background
    • 8.7.2. Technology & Products
    • 8.7.3. SWOT Analysis
    • 8.7.4. Threats
  • 8.8. Novalux
    • 8.8.1. Company Background
    • 8.8.2. Technology & Products
    • 8.8.3. SWOT Analysis
  • 8.9. Oerlikon
    • 8.9.1. Company Background
    • 8.9.2. Technology and Products
    • 8.9.3. SWOT Analysis
  • 8.10. Osram Opto Semiconductor
    • 8.10.1. Company Background
    • 8.10.2. Technology & Products
    • 8.10.3. SWOT Analysis
  • 8.11. Principia Lightworks
    • 8.11.1. Company Background
    • 8.11.2. Technology & Products
    • 8.11.3. SWOT Analysis
  • 8.12. Young Optics
    • 8.12.1. Company Background
    • 8.12.2. Technology and Products
    • 8.12.3. SWOT Analysis

9 Appendix 3: Profiles of Selected Laser System Companies

  • 9.1. Corporation for Laser Optics Research
    • 9.1.1. Company Background
    • 9.1.2. Technology & Products
    • 9.1.3. SWOT Analysis
  • 9.2. Evans & Sutherland
    • 9.2.1. Company Background
    • 9.2.2. Technology & Products
    • 9.2.3. SWOT Analysis
  • 9.3. Fraunhofer Institute
    • 9.3.1. Company Background
    • 9.3.2. Technology & Products
    • 9.3.3. SWOT Analysis
  • 9.4. Jenoptik
    • 9.4.1. Company Background
    • 9.4.2. Technology and Products
    • 9.4.3. SWOT Analysis
  • 9.5. Kodak
    • 9.5.1. Company Background
    • 9.5.2. Technology & Products
    • 9.5.3. SWOT Analysis
  • 9.6. Light Blue Optics
    • 9.6.1. Company Background
    • 9.6.2. Technology & Products
    • 9.6.3. SWOT Analysis
  • 9.7. LightRush
    • 9.7.1. Company Information
    • 9.7.2. Technology & Products
    • 9.7.3. SWOT Analysis
  • 9.8. Microvision
    • 9.8.1. Company Background
    • 9.8.2. Technology & Products
    • 9.8.3. SWOT Analysis
  • 9.9. Mitsubishi
    • 9.9.1. Company Background
    • 9.9.2. Technology and Products
    • 9.9.3. SWOT Analysis
  • 9.10. Rheinmetall
    • 9.10.1. Company Background
    • 9.10.2. Technology and Products
    • 9.10.3. SWOT Analysis
  • 9.11. Sony
    • 9.11.1. Company Background
    • 9.11.2. Products & Technology
    • 9.11.3. SWOT Analysis

Table of Figures

  • Figure 1: Blue Laser Prices for 2007
  • Figure 2: Pricing for White Laser Systems-100K Quantity (Optimistic)
  • Figure 3: Pricing for White Laser Systems-20K Quantity of 1W/Color Lasers
  • Figure 4: Extrapolated vs Breakthrough Pricing for 1W/Color Laser Sets
  • Figure 5: CIE 1931 Colorimetry
  • Figure 6: Video Color Gamuts
  • Figure 7: Gamut of Real Surface Colors
  • Figure 8: Laser Color Gamuts-Laser-1, 2 and 3
  • Figure 9: Color Gamuts of Laser Displays-Laser-4 and 5
  • Figure 10: Osram Ostar Color Gamut Compared to Video and Lasers
  • Figure 11:Color Gamut with 5 Lasers
  • Figure 12: Infitec Color Gamut with 6 Lasers
  • Figure 13: Color Metamerism
  • Figure 14: Hazard Associated with a 400mW Laser
  • Figure 15: Feedback to Control Laser Diodes
  • Figure 16: Wavelength Shift of a Sanyo Red Laser Diode
  • Figure 17: Laser Color Gamut Variation with Wavelength
  • Figure 18: Variation in Threshold Current with Temperature in a Red Laser Diode
  • Figure 19: Customer Returns of Telecom Lasers
  • Figure 20: Laser Materials
  • Figure 21: Q-Peak Laser Using Multiple Wavelength Conversion Processes
  • Figure 22: Jenoptik Laser Using Multiple Wavelength Conversion Processes
  • Figure 23: Edge Emitting Laser Diode
  • Figure 24: Edge Emitting Laser Diode With External SHG
  • Figure 25: Display with a Scanned Laser Bar
  • Figure 26: Surface Emitting Diode Lasers (VCSEL, VECSEL, NECSEL)
  • Figure 27: Straight DPSS Laser from Shanghai Dream Lasers
  • Figure 28: DPSS Green Laser Module from Coherent
  • Figure 29: Coherent "Verdi" DPSS Transfer Curve
  • Figure 30: DPSS 200 mW Green Laser Module from CrystaLaser
  • Figure 31: Electron Beam Pumped Laser from Principia Lightworks
  • Figure 32: Three Color Substrates in a Single eVCSEL CRT Envelope
  • Figure 33: Optical Output vs. E-beam Current for an eVCSEL Laser
  • Figure 34: Layout of a Fiber Laser
  • Figure 35: Technique for Coupling of the Pump Light into the Lasing Fiber
  • Figure 36: MOPA Laser Design
  • Figure 37: Laser Output Variation with PPLN Temperature
  • Figure 38: Packaging Technologies, Power Outputs and Drive Schemes
  • Figure 39: Samsung Laser Diode Package for a Communication Application
  • Figure 40: Sony/Nichia 2 Laser Package
  • Figure 41: Novalux 3 Laser Design
  • Figure 42: CNI Lasers Three-Laser Package
  • Figure 43: Q-Peak 10W 524 nm Green Laser
  • Figure 44: Oerlikon Laser Modules
  • Figure 45: Laser Projector as of 1969
  • Figure 46: Jenoptik Laser Display System
  • Figure 47: Jenoptik Relay Lens
  • Figure 48: Complete Display Module from Fraunhofer Institute
  • Figure 49: Layout of a Monochrome Symbol Technologies Micro-Projector
  • Figure 50: Exterior of a Monochrome Symbol Technologies Micro-Projector
  • Figure 51: Sony Laser Dream Theater Using the GxL 1-D Microdisplay
  • Figure 52: Silicon Light Machines GLV Technology
  • Figure 53: GEMS Device from Kodak
  • Figure 54: Kodak GEMS System Technology
  • Figure 55: Typical Digistar 3 Laser Projector Installation
  • Figure 56: Laser Illumination of Microdisplays
  • Figure 57: Light Blue Optics Real-Time Holographic System
  • Figure 58: Price/Volume Model for Distributors
  • Figure 59: Price/Volume Model for OEMs
  • Figure 60: Price/Volume Model Including Major Design & Development Changes
  • Figure 61: Blue Laser Prices for 2005 and 2007
  • Figure 62: Green Laser Prices for 2005 and 2007
  • Figure 63: Red Laser Prices for 2005 and 2007
  • Figure 64: Yellow Laser Prices for 2007
  • Figure 65: Observed vs. Forecast Price Declines
  • Figure 66: Pricing for White Laser Systems-Unit Quantity (Optimistic)
  • Figure 67: Pricing for White Laser Systems-1K Quantity (Optimistic)
  • Figure 68: Pricing for White Laser Systems-100K Quantity (Optimistic)
  • Figure 69 : Pricing for White Laser Systems-Unit Quantity (Expected)
  • Figure 70: Pricing for White Laser Systems-1K Quantity (Expected)
  • Figure 71 Pricing for White Laser Systems-100K Quantity (Expected)
  • Figure 72 Pricing for White Laser Systems-Unit Quantity (Conservative)
  • Figure 73 Pricing for White Laser Systems-1K Quantity (Conservative)
  • Figure 74 Pricing for White Laser Systems-100K Quantity (Conservative)
  • Figure 75 Summary of Pricing for 1W/Color White Laser Systems-20K Quantity
  • Figure 76 Summary of Pricing for 50mW/Color White Laser Systems-100K Quantity
  • Figure 77 Breakthrough Price Forecast-20K Quantity, 1W/Color Lasers
  • Figure 78 Breakthrough Price Forecast-100K Quantity, 50mW/Color Lasers
  • Figure 79: Coherent Laser Module for DLP Demonstration Projector
  • Figure 80: Corning Green Laser Module
  • Figure 81: Nichia 50mW Blue Laser Diode
  • Figure 82: InFocus 777 Projector Converted to Laser Illumination by Novalux
  • Figure 83: Novalux NECSEL Lasers
  • Figure 84: Oerlikon Laser Modules
  • Figure 85: Multicolor Principia Lasers in One CRT Envelope
  • Figure 86: Young Optics Representative Products
  • Figure 87: E&S Digistar 3 Laser Projector at the Center of a Domed Theater
  • Figure 88: Fraunhofer IPMS Laser Projector
  • Figure 89: Jenoptik LDT Projector Layout
  • Figure 90: Image Produced by a Jenoptik LDT Laser Projector
  • Figure 91: Color Gamut Comparison of Laser and Other Projectors
  • Figure 92: Microvision Scanning Mirror
  • Figure 93: Three AVIOR Projector Heads Mounted on a Motion Base
  • Figure 94: Edge-Matched Jenoptik Projectors in a Rheinmetall Simulator
  • Figure 95: Sony Laser Dream Theater

List of Tables

  • Table 1: Market Segment Definitions and Key Properties
  • Table 2: Market Segment Definitions and Key Properties
  • Table 3: Color Coordinates for Key Video Formats
  • Table 4: Laser Wavelengths and Powers
  • Table 5: Laser Powers with More than 3 Colors
  • Table 6: Wavelengths and Powers for Infitec Lasers
  • Table 7: Lifetime and Color Shift Requirements Summary by Application
  • Table 8: Output Power Limits
  • Table 9: Probable Laser Class Associated with Each Targeted Application
  • Table 10: Partial List of OPO System Wavelengths
  • Table 11: Summary of Laser Technologies
  • Table 12: Summary of Display Technologies
  • Table 13: Partial List of Available Laser Wavelengths
  • Table 14: Price vs. Volume Model Exponents
  • Table 15: Price/Volume Model Parameters for 2007
  • Table 16 Laser Price Decline: Optimistic Forecast
  • Table 17 Laser Price Decline: Expected Forecast
  • Table 18: Laser Price Decline: Conservative Forecast
  • Table 19: Laser-Based Automotive HUD
  • Table 20: Laser-Based HMD
Back to Top